Tunneling

Outline

- Review: Barrier Reflection
- Barrier Penetration (Tunneling)
- Flash Memory

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathbf{V}$

In Region 1:

$$
E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

$$
\Longrightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}
$$

In Region 2:

$$
\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow k_{2}^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
$$

A Simple Potential Step

CASE I : $\mathrm{E}_{\mathrm{o}}>\mathrm{V}$

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-j k_{2} x}
$$

ψ is continuous:

$$
\psi_{1}(0)=\psi_{2}(0)
$$

\Rightarrow

$$
A+B=C
$$

$\frac{\partial \psi}{\partial x}$ is continuous: $\quad \frac{\partial}{\partial x} \psi(0)=\frac{\partial}{\partial x} \psi_{2}(0) \quad \Longrightarrow \quad A-B=\frac{k_{2}}{k_{1}} C$

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathrm{V}$

$$
\xrightarrow{\psi_{A}=A e^{-j k_{1} x}}, \quad \psi_{C}=C e^{-j k_{1} x}
$$

$$
\begin{array}{rlrl}
\frac{B}{A} & =\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} \\
& =\frac{k_{1}-k_{2}}{k_{1}+k_{2}} & \frac{C}{A} & =\frac{2}{1+k_{2} / k_{1}} \\
& =\frac{2 k_{1}}{k_{1}+k_{2}}
\end{array} \quad \Longleftrightarrow\left\{\begin{array}{l}
A+B=C \\
A-B=\frac{k_{2}}{k_{1}} C
\end{array}\right.
$$

Example from: http:// phet.colorado. edu/ en/ get-phet/ one-at-a-time

Quantum Electron Currents

Given an electron of mass m
that is located in space with charge density $\rho=q|\psi(x)|^{2}$
and moving with momentum $<p>$ corresponding to $<v>=\hbar k / m$
...then the current density for a single electron is given by

$$
J=\rho v=q|\psi|^{2}(\hbar k / m)
$$

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathbf{V}$

$$
\begin{gathered}
\text { Reflection }=R=\frac{J_{\text {reflected }}}{J_{\text {incident }}}=\frac{J_{B}}{J_{A}}=\frac{\left|\psi_{B}\right|^{2}\left(\hbar k_{1} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{B}{A}\right|^{2} \\
\text { Transmission }=T=\frac{J_{\text {transmitted }}}{J_{\text {incident }}}=\frac{J_{C}}{J_{A}}=\frac{\left|\psi_{C}\right|^{2}\left(\hbar k_{2} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{C}{A}\right|^{2} \frac{k_{2}}{k_{1}} \\
\frac{B}{A}=\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} \quad \frac{C}{A}=\frac{2}{1+k_{2} / k_{1}}
\end{gathered}
$$

A Simple Potential Step

Reflection $=R=\left|\frac{B}{A}\right|^{2}=\left|\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right|^{2}$
Transmission $=T=1-R$
$=\frac{4 k_{1} k_{2}}{\left|k_{1}+k_{2}\right|^{2}}$

IBM Almaden STM of Copper

Image originally created by the IBM Corporation.
© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Image originally created by the IBM Corporation.
© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw, mit.edu/fairuse.

A Simple Potential Step

In Region 1: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Rightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2:

$$
\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow \kappa^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
$$

A Simple Potential Step

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-\kappa x}
$$

ψ is continuous:

$$
\psi_{1}(0)=\psi_{2}(0)
$$

$$
A+B=C
$$

$\frac{\partial \psi}{\partial x}$ is continuous: $\quad \frac{\partial}{\partial x} \psi(0)=\frac{\partial}{\partial x} \psi_{2}(0) \quad \Longrightarrow \quad A-B=-j \frac{\kappa}{k_{1}} C$

A Simple Potential Step

CASE II: $E_{0}<V$

$$
\begin{array}{cc}
\frac{B}{A}=\frac{1+j \kappa / k_{1}}{1-j \kappa / k_{1}} & \frac{C}{A}=\frac{2}{1-j \kappa / k_{1}} \\
R=\left|\frac{B}{A}\right|^{2}=1 & T=0
\end{array}
$$

Total reflection \rightarrow Transmission must be zero

Quantum Tunneling Through a Thin Potential Barrier

Total Reflection at Boundary

Frustrated Total Reflection (Tunneling)

A Rectangular

In Regions 1 and 3: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \square k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2:

$$
\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \square \quad \kappa^{2}=\frac{2 m\left(V-E_{o}\right)}{\hbar^{2}}
$$

$$
T=\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

A Rectangular Potential Step

Real part of Ψ for $E_{0}<V$, shows hyperbolic (exponential) decay in the barrier domain and decrease in amplitude of the transmitted wave.

Transmission Coefficient versus $\mathrm{E}_{\mathrm{o}} / \mathrm{V}$ for barrier with $2 m(2 a)^{2} V / \hbar=16$

$$
T=\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

$$
\sinh ^{2}(2 \kappa a)=\left[e^{2 \kappa a}-e^{-2 \kappa a}\right]^{2} \approx e^{-4 \kappa a}
$$

$$
T=\left|\frac{F}{A}\right|^{2} \approx \frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)}} e^{-4 \kappa a}
$$

TunnelingApplet: http://www colorado.edu/physics/phet/dev/quantum-tunneling/1.07.00/

Flash Memory

Image is in the public domain

Electrons tunnel preferentially when a voltage is applied

MOSFET: Transistor in a Nutshell

, P D HFFRXUAAM [RIGU+R\ VZ* URXSप (\&6]

Tunneling causes thin insulating layers to become leaky !

Conduction electron flow

Image is in the public domain

Reading Flash Memory

UNPROGRAMMED

PROGRAMMED

SLICON

To obtain the same channel charge, the programmed gate needs a higher control-gate voltage than the unprogrammed gate

How do we WRITE Flash Memory ?

Example: Barrier Tunneling

- Let' s consider a tunneling problem:

An electron with a total energy of $E_{0}=6 \mathrm{eV}$ approaches a potential barrier with a height of $\mathrm{V}_{0}=12 \mathrm{eV}$. If the width of the barrier is
$\mathrm{L}=0.18 \mathrm{~nm}$, what is the probability that the electron will tunnel through the barrier?

	$L=2 a$
metal	E
	metal
0 L air	

$$
T=\left|\frac{F}{A}\right|^{2} \approx \frac{16 E_{o}\left(V-E_{o}\right)}{V^{2}} e^{-2 \kappa L}
$$

gap

$$
\kappa=\sqrt{\frac{2 m_{e}}{\hbar^{2}}\left(V-E_{o}\right)}=2 \pi \sqrt{\frac{2 m_{e}}{h^{2}}\left(V-E_{o}\right)}=2 \pi \sqrt{\frac{6 \mathrm{eV}}{1.505 \mathrm{eV}-\mathrm{nm}^{2}}} \approx 12.6 \mathrm{~nm}^{-1}
$$

$$
T=4 e^{-2\left(12.6 \mathrm{~nm}^{-1}\right)(0.18 \mathrm{~nm})}=4(0.011)=4.4 \%
$$

Question: What will T be if we double the width of the gap?

Multiple Choice Questions

Consider a particle tunneling through a barrier:

1. Which of the following will increase the likelihood of tunneling?
a. decrease the height of the barrier
b. decrease the width of the barrier
c. decrease the mass of the particle
2. What is the energy of the particles that have successfully "escaped"?
a. <initial energy
b. =initial energy
c. >initial energy

Although the amplitude of the wave is smaller after the barrier, no energy is lost in the tunneling process

Application of Tunneling: Scanning Tunnel ing Mi croscopy (STM)

Due to the quantum effect of "barrier penetration," the electron density of a material extends beyond its surface:

One can exploit this to measure the electron density on a material' s surface:

© IBM Corporation. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit,edu/fairuse.
Image is in the public domain

Reflection of EM Waves and QM Waves

$$
\begin{aligned}
& P=\hbar \omega \times \frac{\text { photons }}{\mathrm{s} \mathrm{~cm}^{2}} \\
& P=\frac{|E|^{2}}{\eta}
\end{aligned}
$$

$$
R=\frac{P_{\text {reflected }}}{P_{\text {incident }}}=\left|\frac{E_{o}^{r}}{E_{o}^{i}}\right|^{2}
$$

Then for optical material when $\mu=\mu_{0}$:

$$
\begin{aligned}
& R=\left|\frac{B}{A}\right|^{2}=\left|\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right|^{2} \\
&=\left|\frac{n_{1}+n_{2}}{n_{1}+n_{2}}\right|^{2} \\
&=\text { probability of a particular } \\
& \text { photon being reflected }
\end{aligned}
$$

$$
\begin{aligned}
J & =q \times \frac{\text { electrons }}{\mathrm{s} \mathrm{~cm}^{2}} \\
J & =\rho v=q|\psi|^{2}(\hbar k / m) \\
R & =\frac{J_{\text {reflected }}}{J_{\text {incident }}}=\frac{\left|\psi_{B}\right|^{2}}{\left|\psi_{A}\right|^{2}} \\
R & =\left|\frac{B}{A}\right|^{2}=\left|\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right|^{2} \\
& =\begin{array}{c}
\text { probability of a particular } \\
\text { electron being reflected }
\end{array}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu
6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

