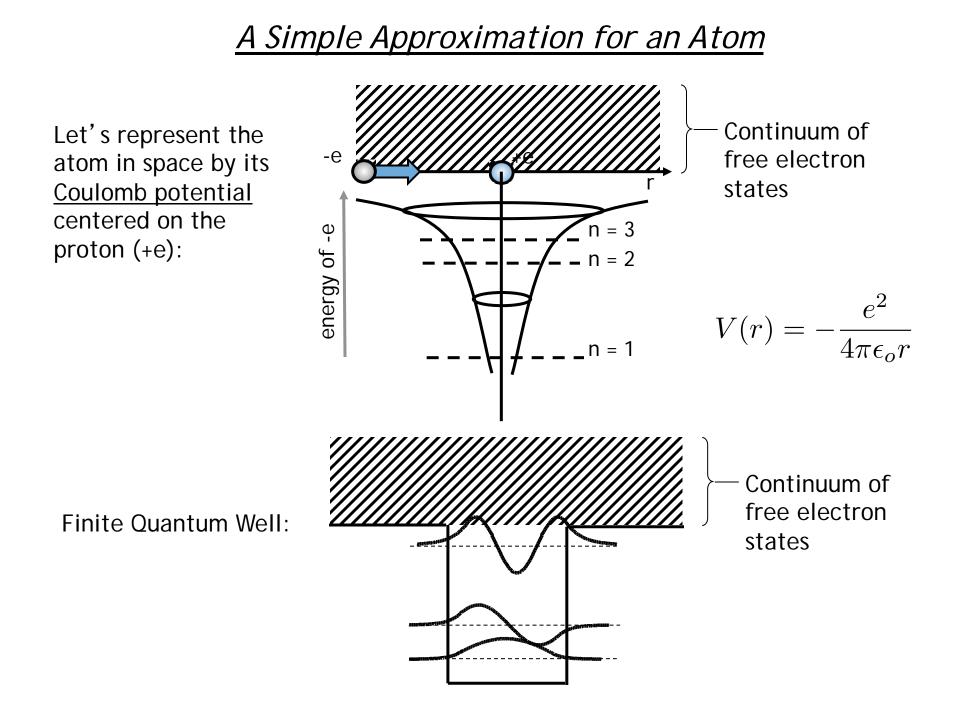
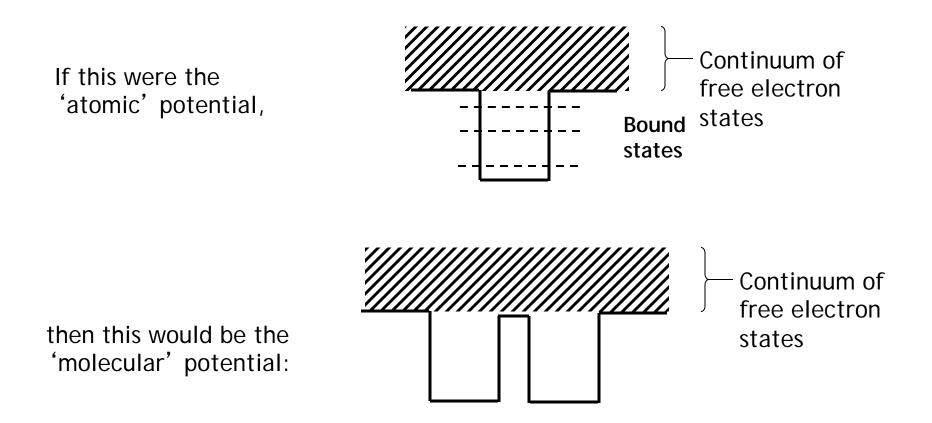
From Atoms to Solids

<u>Outline</u>

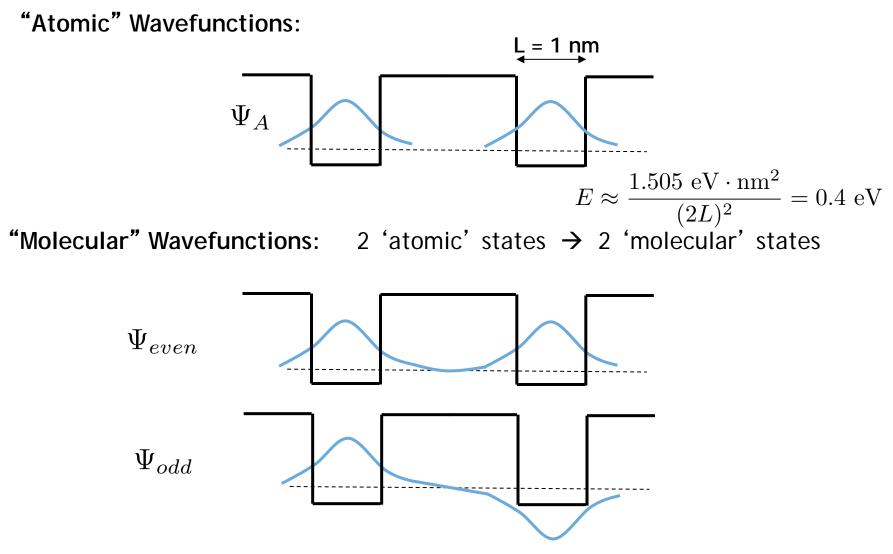
- Atomic and Molecular Wavefunctions
- Molecular Hydrogen
- Benzene



<u>A Simple Approximation for a Molecule</u>

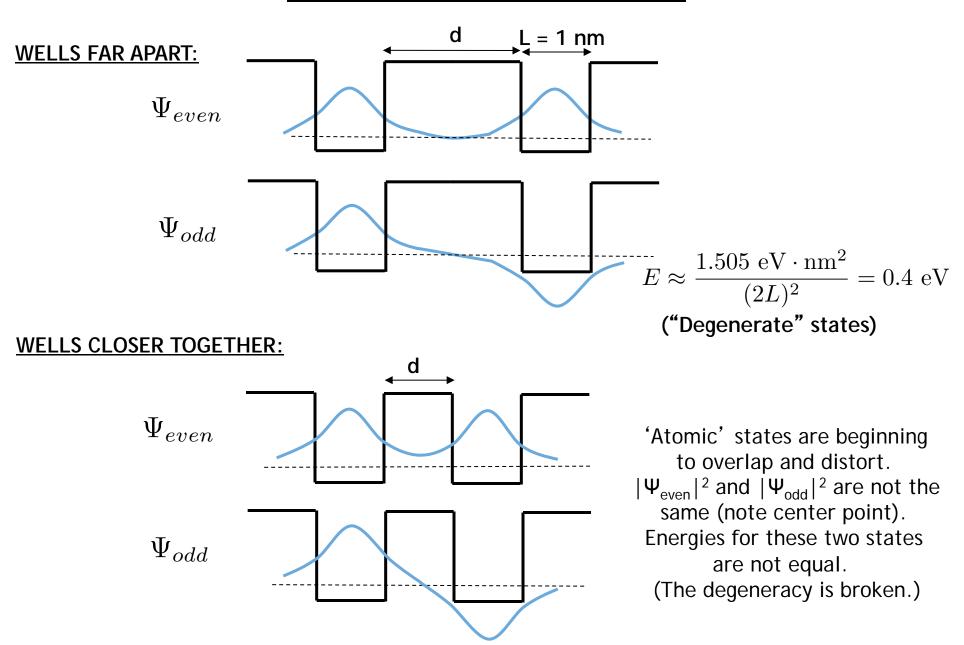


We do not know exactly what the energy levels are, although in 1-D we could solve the equation exactly if we had to 'Molecular' Wavefunctions



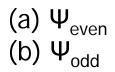
When the wells are far apart, 'atomic' functions don't overlap. A <u>single electron</u> can be in either well with equal probability, and E = 0.4 eV.

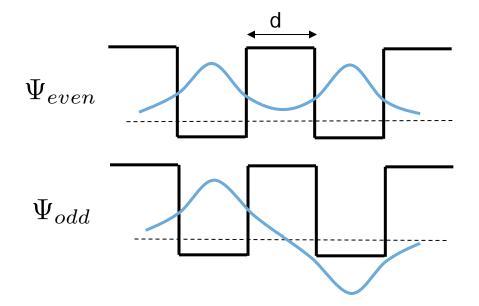
'Molecular' Wavefunctions



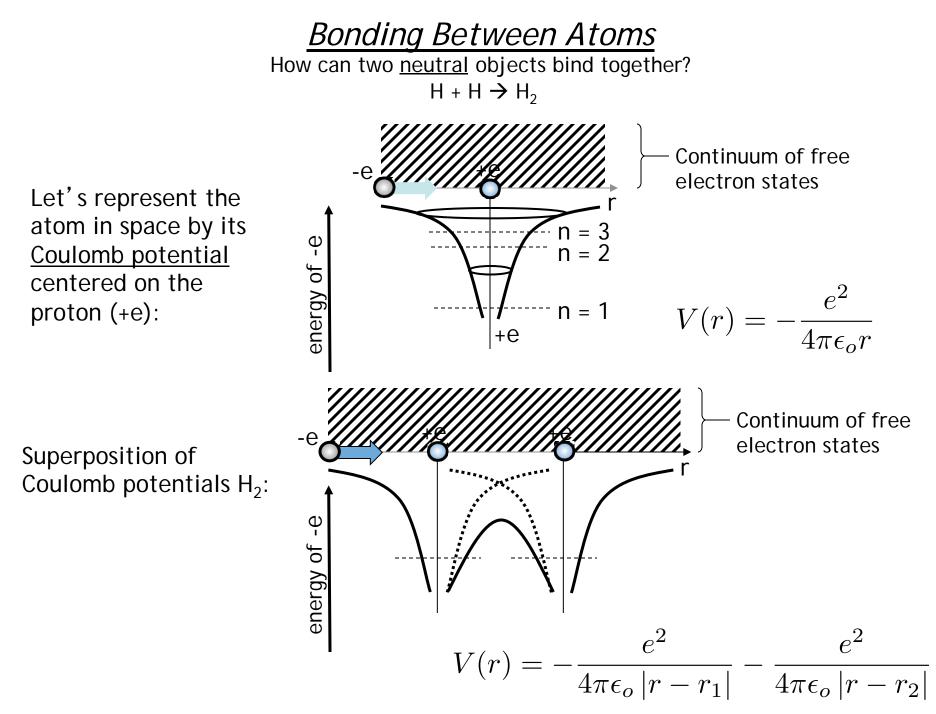
'Molecular' Wavefunctions

1. Which state has the lower energy?

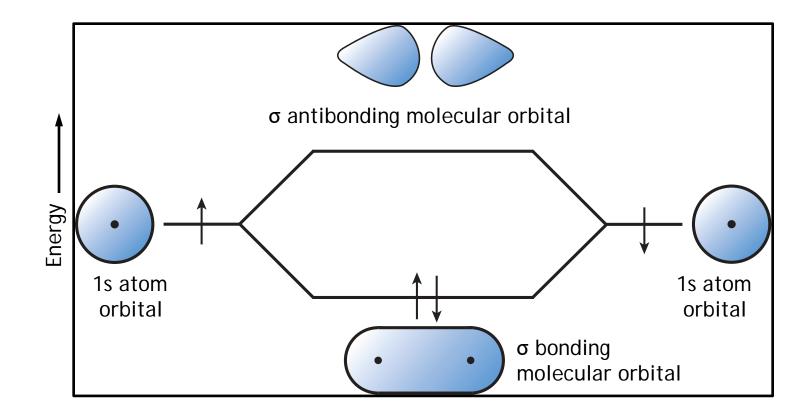


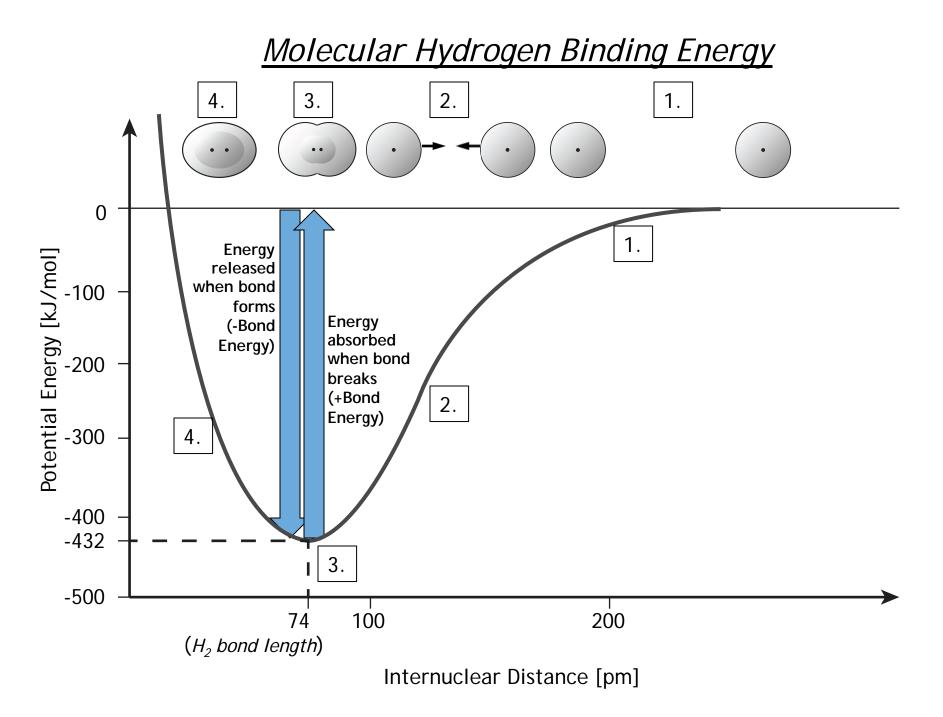


- 2. What will happen to the energy of Ψ_{even} as the two wells come together (i.e., as d is reduced)?
 - (a) E increases
 - (b) E decreases
 - (c) E stays the same

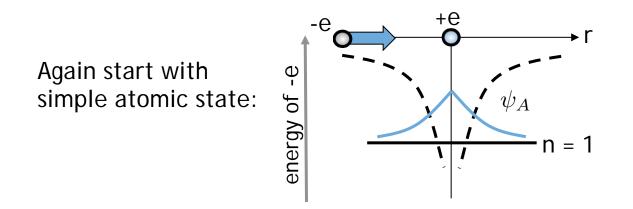


Molecular Hydrogen

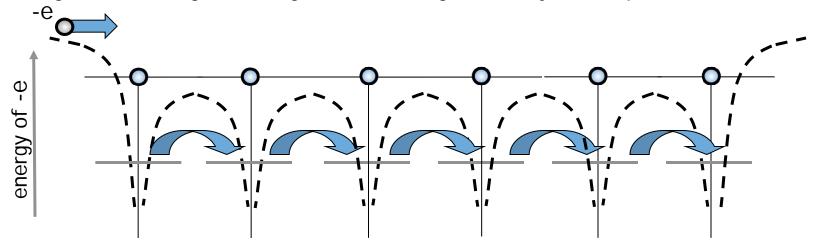




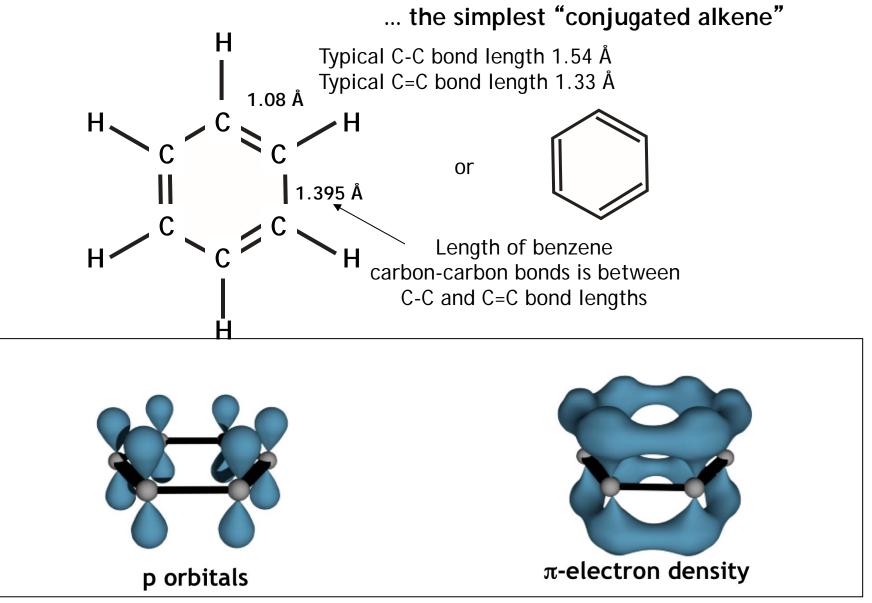
Tunneling Between Atoms in Solids



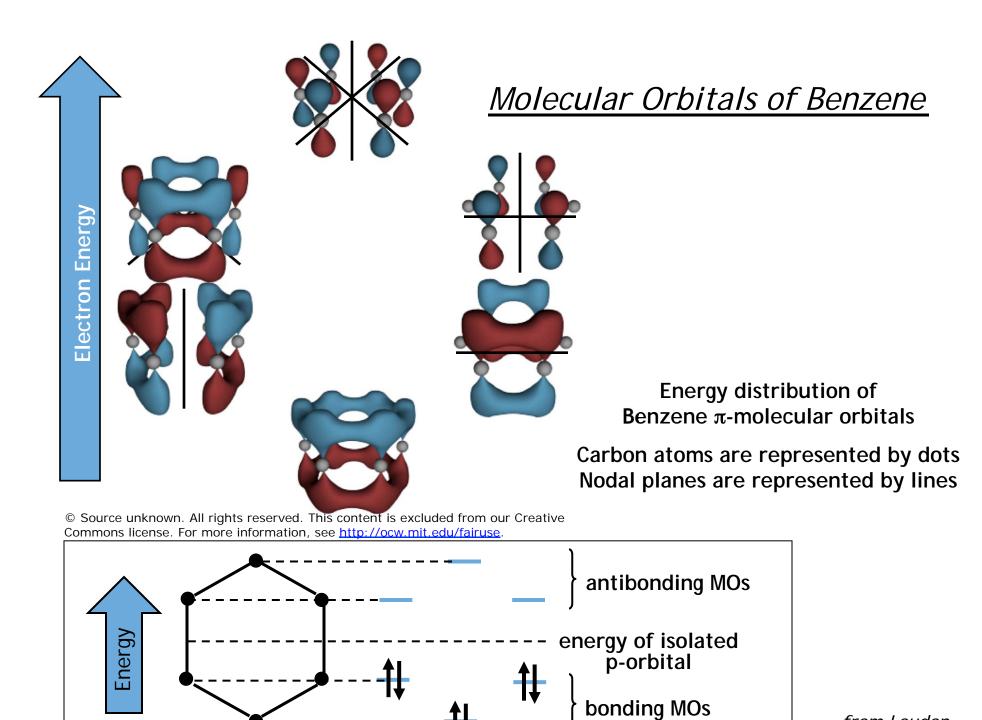
Bring N atoms together together forming a 1-d crystal (a periodic lattice)...



Let Take a Look at Molecular Orbitals of Benzene

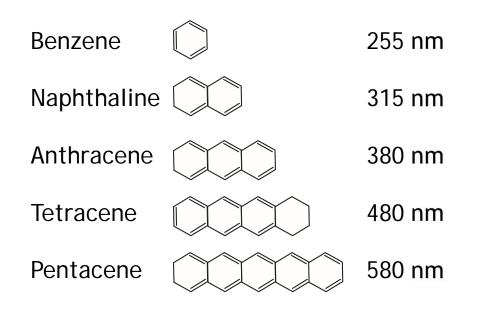


© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/fairuse</u>.

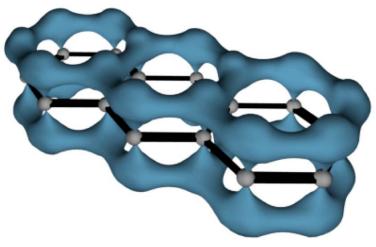


from Loudon

... More Examples - Series of Polyacene Molecules

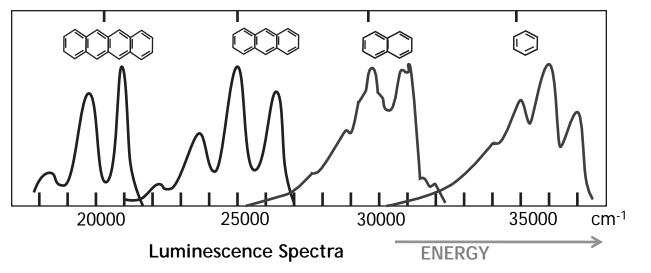


The lowest bonding MO of anthracene

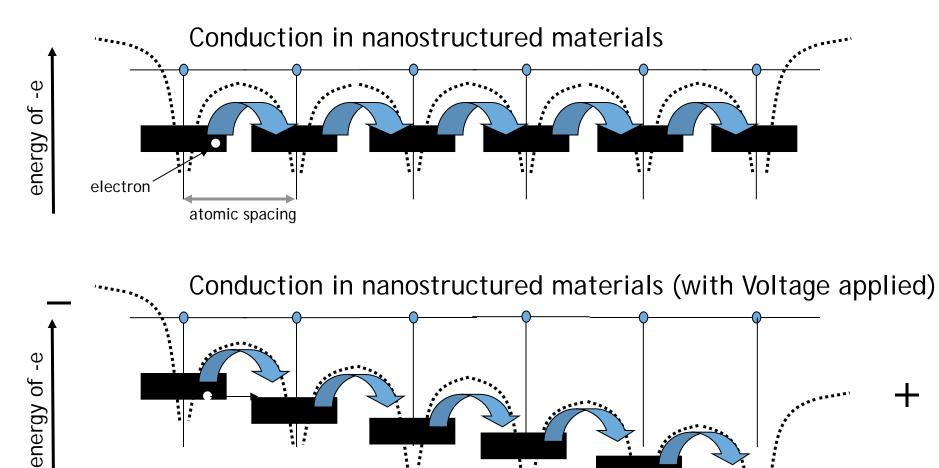


© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/fairuse</u>.

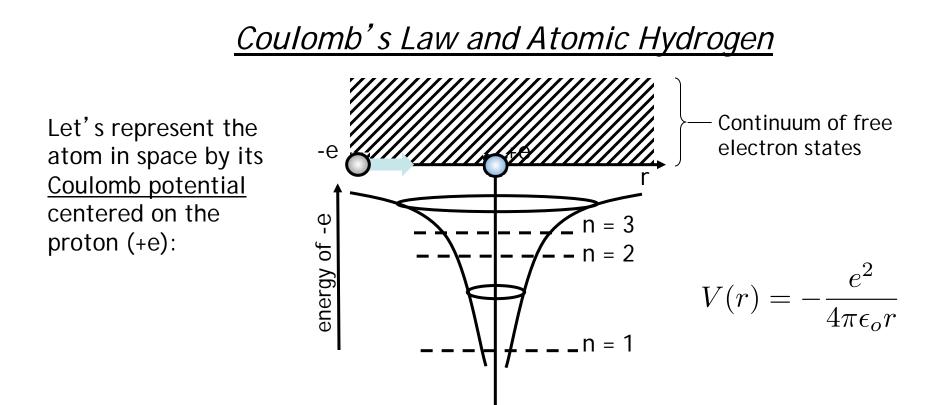
Red: bigger molecules ! Blue: smaller molecules !



Tunneling Between Atoms in Solids



TUNNELING IS THE MECHANISM FOR CONDUCTION



Time-Independent Schrödinger Equation

$$E\psi(\mathbf{r}) = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) - \frac{e^2}{4\pi\epsilon_o r}\psi(\mathbf{r})$$

<u>Solutions</u>

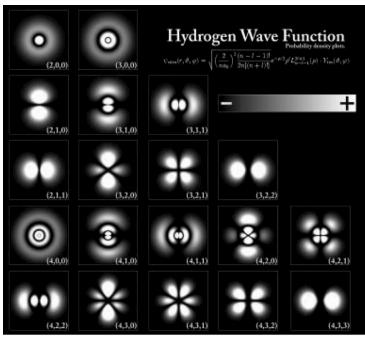


Image in the Public Domain

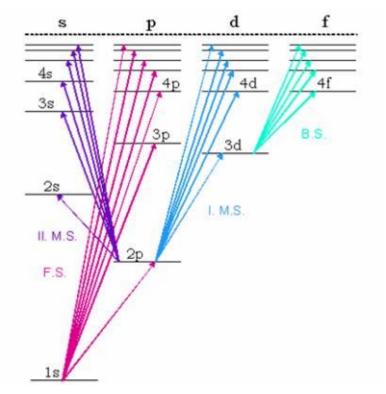


Image by <u>Szdori</u> on Wikipedia.

 $\psi_{1s}(\mathbf{\dot{r}}) = e^{-r/a_0}$ $\psi_{2px}(\mathbf{\dot{r}}) = xe^{-r/2a_0}$ $\psi_{2py}(\mathbf{\dot{r}}) = ye^{-r/2a_0}$ $\psi_{2pz}(\mathbf{\dot{r}}) = ze^{-r/2a_0}$

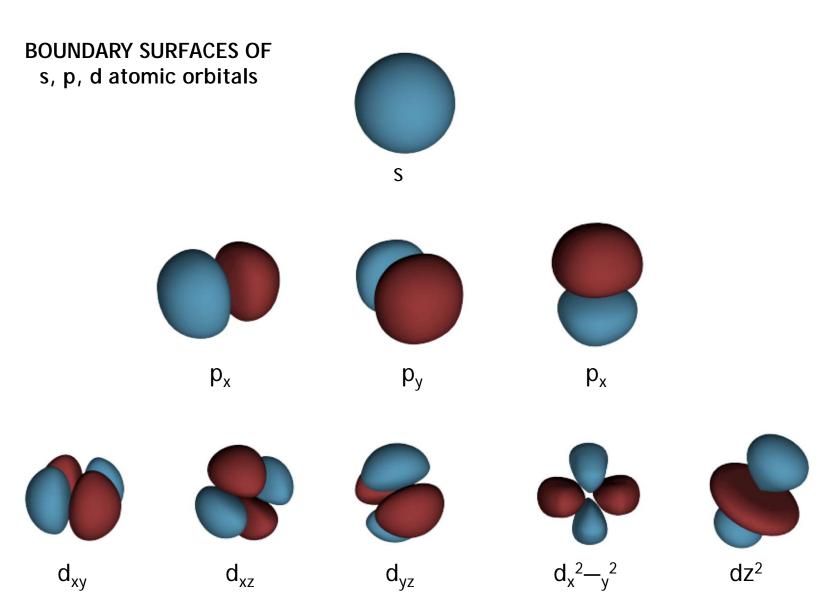
These are some solutions, without normalization.

 $E_{1s} = -I_H$

 $E_{2p} = -I_H/4$

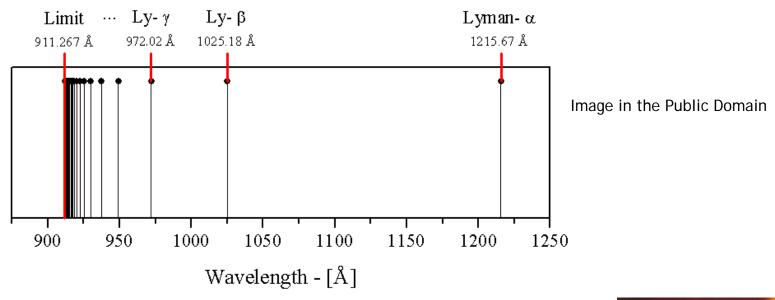
a_o = 0.0529 nm *I_H* = 13.606 eV

Solutions



© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/fairuse</u>.

<u>1s-np transitions in atomic hydrogen</u>



The Lyman alpha blob, so called because of its Lyman alpha emission line, photons must be redshifted to be transmitted through the atmosphere

Image in the Public Domain

Energy Levels of Atomic Lithium

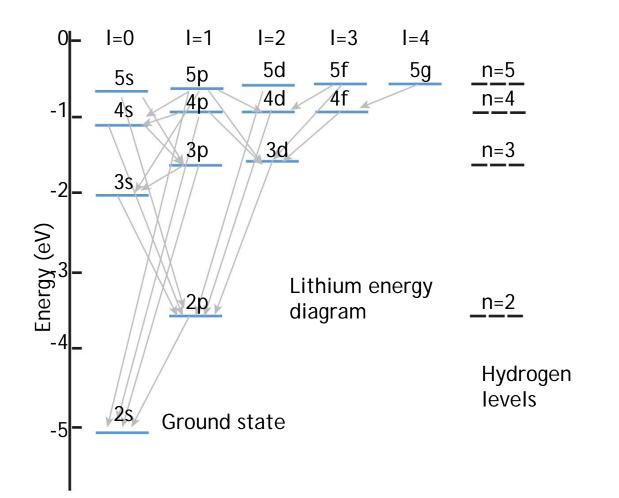


Image in the Public Domain

Ground state is 1s²2s, excited states shown are 1s²np

Image in the Public Domain

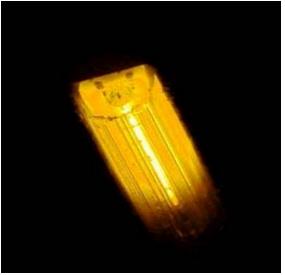
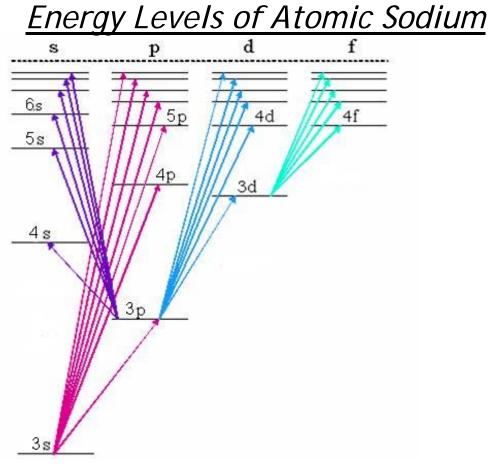


Image in the Public Domain



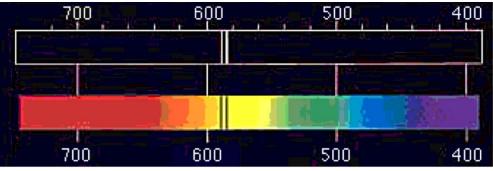
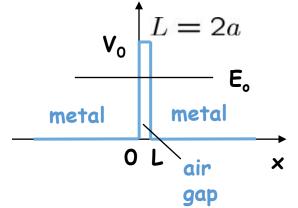


Image in the Public Domain

Example: Barrier Tunneling

• Let's consider a tunneling problem:

An electron with a total energy of $E_0 = 6 \text{ eV}$ approaches a potential barrier with a height of $V_0 = 12 \text{ eV}$. If the width of the barrier is L = 0.18 nm, what is the probability that the electron will tunnel through the barrier?



$$T = \left|\frac{F}{A}\right|^2 \approx \frac{16E_o(V - E_o)}{V^2}e^{-2\kappa L}$$

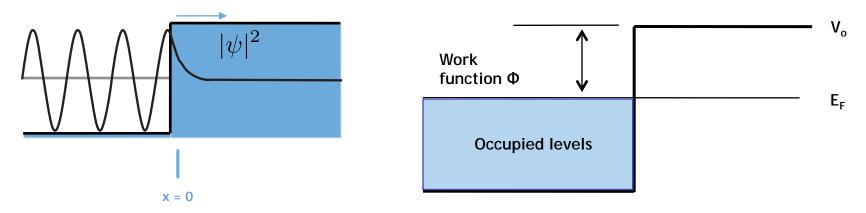
$$\kappa = \sqrt{\frac{2m_e}{\hbar^2}(V_o - E)} = 2\pi \sqrt{\frac{2m_e}{\hbar^2}(V_o - E)} = 2\pi \sqrt{\frac{6 \text{ eV}}{1.505 \text{ eV-nm}^2}} \approx 12.6 \text{ nm}^{-1}$$

$$T = 4e^{-2(12.6 \text{ nm}^{-1})(0.18 \text{ nm})} = 4(0.011) = 4.4\%$$

Question: What will T be if we double the width of the gap?

Leaky Particles

Due to "barrier penetration", the electron density of a metal actually extends outside the surface of the metal !



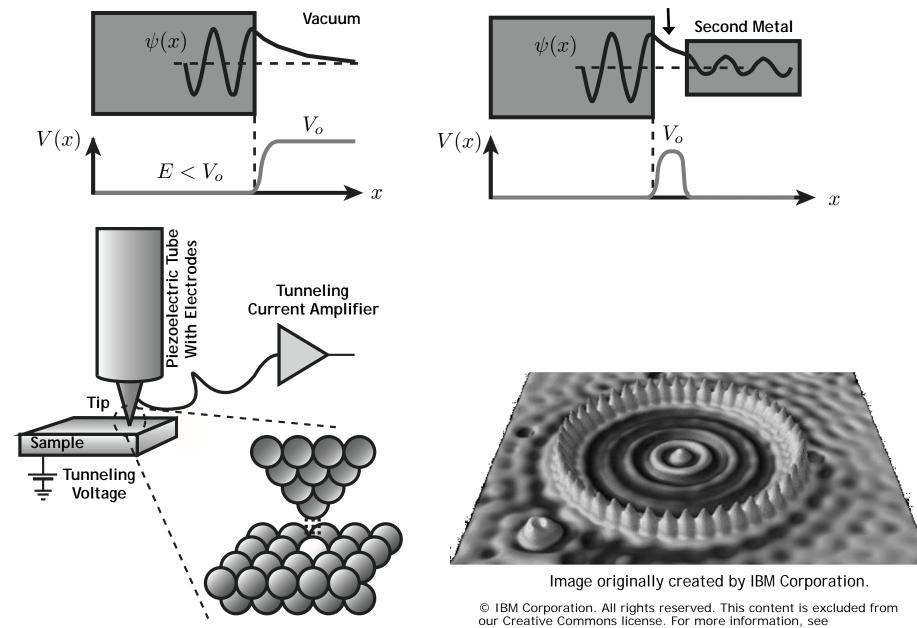
Assume that the work function (i.e., the energy difference between the most energetic conduction electrons and the potential barrier at the surface) of a certain metal is $\Phi = 5 \text{ eV}$. Estimate the distance x outside the surface of the metal at which the electron probability density drops to 1/1000 of that just inside the metal.

(Note: in previous slides the thickness of the potential barrier was defined as x = 2a)

$$\frac{|\psi(x)|^2}{|\psi(0)|^2} = e^{-2\kappa x} \approx \frac{1}{1000} \implies x = -\frac{1}{2\kappa} \ln\left(\frac{1}{1000}\right) \approx 0.3 \text{ nm}$$

using $\kappa = \sqrt{\frac{2m_e}{\hbar^2}(V_o - E)} = 2\pi \sqrt{\frac{2m_e}{h^2}\Phi} = 2\pi \sqrt{\frac{5 \text{ eV}}{1.505 \text{ eV} \cdot \text{ nm}^2}} = 11.5 \text{ nm}^{-1}$

<u>Application: Scanning Tunneling Microscopy</u>



http://ocw.mit.edu/fairuse.

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.