Quantum Superposition and Optical Transitions

<u>Outline</u>

Generating EM Fields Time-Varying Wavefunctions Superposition of Energy States

Maxwell and Schrödinger

Maxwell's Equations

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_S \vec{B} \cdot d\vec{l} \right)$$
$$\oint_C \vec{H} \cdot d\vec{l} = \int \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \epsilon \vec{E} \cdot d\vec{A}$$

The Wave Equation

$$\frac{\partial^2 E_y}{\partial z^2} = \epsilon \mu \frac{\partial^2 E_y}{\partial t^2}$$

Dispersion Relation

$$\omega^2 = c^2 k^2$$

$$\omega = ck$$

Energy-Momentum

$$E = \hbar\omega = \hbar ck = cp$$

Quantum Field Theory

... is thought to be the unique and correct outcome of combining the rules of quantum mechanics with the principles of the theory of relativity.

The Schrodinger Equation

$$-j\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi$$

(free-particle)

Dispersion Relation

$$\begin{split} \hbar \omega &= \frac{\hbar^2 k^2}{2m} \\ \text{Energy-Momentum} \\ E &= \frac{p^2}{2m} \quad \text{(free-particle)} \end{split}$$

P-N Junctions and LEDs

High energy electrons (n-type) fall into low energy holes (p-type)

P-N Junctions and LEDs

P-N Junctions and LEDs

Uncertain energy during transition from high energy to low energy

$$\Psi(x,t) = \psi_1(x)e^{-iE_1t/\hbar} + \psi_2(x)e^{-iE_2t/\hbar}$$

Coupling of Electric and Magnetic Fields

Maxwell's Equations couple H and E fields..

Oscillating B generates H...

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_S \vec{B} \cdot d\vec{A} \right)$$

Oscillating E generates H...

How are the oscillating fields generated ?

Time-Dependent Schrodinger Equation

For that matter, how do we get ANYTHING to move ?

$$\Psi(x,t) = e^{-iEt/\hbar}\psi(x)$$
$$i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi \quad \square \qquad E\psi = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V(x)\psi$$

Schrodinger says that definite energy states do not move, they are stationary !

$$|\Psi(x,t)|^2 = |\psi(x)|^2$$

Example: Superposition of Energy States

- It is possible that a particle can be in a superposition of "eigenstates" with *different* energies.
 - Such superpositions are also solutions of the time-dependent SEQ!
 - What is E of this superposition?

Let's see how these superpositions evolve with time.

 Particle is described by a wavefunction involving a superposition of the two lowest infinite square well states (n=1 and 2)

Example: Superposition of Energy States

The probability density is given by: $|\Psi(x,t)|^2$:

$$|\Psi(x,t)|^{2} = |\psi_{1}(x)|^{2} + |\psi_{2}(x)|^{2} + 2\psi_{1}\psi_{2}\cos((\omega_{1} - \omega_{2})t))$$

Because the cos term oscillates between ± 1 , $|\Psi(x,t)|^2$ oscillates between:

particle localized on left side of well

particle localized on right side of well

The frequency of oscillation between these two extremes is $\omega = \frac{E_2 - E_1}{\hbar}$

Numerical Example

 $|\psi(x,t=0)|^2$

 $|\psi(x,t_0)|^2$

V=∞

Х

V=∞

н

V=∞

0

V=∞

Consider the numerical example: ٠

An electron in the infinite square well potential is initially (at t=0) confined to the left side of the well, and is described by the following wavefunction:

$$\Psi(x,t=0) = A\sqrt{\frac{2}{L}} \left(\sin\left(\frac{\pi}{L}x\right) + \sin\left(\frac{2\pi}{L}x\right) \right)$$

If the well width is L = 0.5 nm, determine the time t_0 it takes for the particle to "move" to the right side of the well. OT /

$$E_n = \frac{h^2}{2m_e\lambda_n^2} = \frac{1.505\text{eV}\cdot\text{nm}^2}{\lambda_n^2} \qquad \lambda_n = 2L/n \qquad 0 \qquad L \quad x$$

$$E_n = E_1 n^2 \qquad \text{period } \mathsf{T} = 1/\mathsf{f} = 2\mathsf{t}_0 \qquad \text{with } \mathsf{f} = (\mathsf{E}_2 - \mathsf{E}_1)/\mathsf{h}$$

$$E_1 = \frac{1.505 \text{ eV} \cdot\text{nm}^2}{4L^2} = \frac{1.505 \text{ eV} \cdot\text{nm}^2}{4(0.5 \text{ nm})^2} = 1.505 \text{ eV} \qquad \text{with } \mathsf{f} = (\mathsf{E}_2 - \mathsf{E}_1)/\mathsf{h}$$

$$\implies t_o = \frac{T}{2} = \frac{h}{2(E_2 - E_1)} = \frac{h}{2(3E_1)} = \frac{4.136 \times 10^{-15} \text{ eV} \cdot\text{sec}}{2(3 \times 1.5 \text{ eV})} = 4.6 \times 10^{-16} \text{ sec}$$

Example: Superposition of Energy States

Consider a particle in an infinite potential well, which at t= 0 is in the state:

$$\Psi(x,t) = 0.5\psi_2(x)e^{-i\omega_2 t} + 0.866\psi_4(x)e^{-i\omega_4 t}$$

with $\psi_2(x)$ and $\psi_4(x)$ both normalized.

$$\psi_2(x) = A_2 \sin\left(\frac{2\pi}{L}x\right)$$
$$\psi_4(x) = A_4 \sin\left(\frac{4\pi}{L}x\right)$$

1. If we measure the energy of the particle: What is the measured energy?

(a)
$$E_2$$
 (b) E_4 (c) 0.25 E_2 + 0.75 E_4
(d) It depends on *when* we measure the energy

2. If we measure the energy of the particle: What is the expected (average) energy?

(a)
$$E_2$$
 (b) E_4 (c) 0.25 E_2 + 0.75 E_4
(d) It depends on *when* we measure the energy

Normalizing Superposition States

• It's a mathematical fact that any two eigenstates with different eigenvalues (of any measurable, including energy) are ORTHOGONAL

» Meaning:

$$\int \psi_1^*(x)\psi_2(x)dx = 0$$

So when you normalize a superposition of normalized energy eigenstates, you just have to make the sum of the absolute squares of their coefficients come out 1.

$$\psi_1(x) = A_1 \sin\left(\frac{\pi}{L}x\right) \qquad \qquad \forall e^{\infty} \qquad \qquad \forall \psi(x) \qquad \forall \psi_1 \qquad \forall e^{\infty} \qquad \forall e^{\infty} \qquad \forall \psi_1 \qquad \forall e^{\infty} \qquad e^{\infty} \qquad \forall e^{\infty}$$

Energy of Superposition States

• The important new result concerning superpositions of energy eigenstates is that these superpositions represent quantum particles that are *moving*. Consider:

$$\Psi(x,t) = A_1 \psi_1(x) e^{-i\omega_1 t} + A_2 \psi_2(x) e^{-i\omega_2 t}$$

- But what happens if we try to measure E on a wavefunction which involves more than one energy?
 - <u>We can still only measure one of the allowed energies</u>,
 i.e., one of the eigenstate energies (e.g., only E₁ or E₂ in Ψ(x,t) above)!

If $\Psi(x,t)$ is normalized, $|A_1|^2$ and $|A_2|^2$ give us the probabilities that energies E_1 and E_2 , respectively, will be measured in an experiment!

• When do we not know the energy of an electron ?

Beautiful Consistency

• At what frequency does the charge oscillation occur?

• How much energy does the field take away?

• What is the energy of the photon that is released ?

Quantum mechanics gives us the oscillating dipole, Maxwell gives us the field !

Atomic Transitions

$$\Psi = c_{1s}\phi_{1s}e^{iE_{1s}t} + c_{2p}\phi_{2p}e^{iE_{2p}t}$$

Solar Cells and Photodetectors

<u>Classical</u>: Oscillating electric field drives charge oscillation

<u>*Ouantum*</u>: Electric field creates superposition of energy states - which have an oscillating charge density

(junction of two differently doped pieces of the same semiconductors)

Semiconductor Homojunction Solar Cell

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.