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•	 Write your name in the space above, because we will be collecting your question booklet in 
addition to you answer booklet but will return it to you when you collect your answer booklet. 

•	 This is a closed book exam, but you may use 6 sheets of notes (both sides). 

•	 Calculators are allowed, but probably will not be useful. 

•	 There are five problems on the exam, with point distributions of 15, 20, 25, 15, 25, for  
a total of 100 points. We have also marked for each problem a rough guide to the number 
of minutes you would spend on the problem if you were dividing your time according to the 
points on the problem. The time you choose to spend may differ, of course, based on which 
problems you are more or less comfortable with. However, budget your time carefully; 
if you are stuck on a problem, try and move on to another part or another problem, then 
return if you have time later. Avoid spending inordinately longer than the prorated time on 
any particular problem. 

•	 Be clear and precise in your reasoning and show all relevant work. The grade on each 
problem is based on our best assessment of your level of understanding, as reflected by what 
you have written. A correct final answer does not guarantee full credit; nor does an incorrect 
final answer necessarily mean loss of all credit. 

•	 If we can’t read it, we can’t/won’t grade it! So please write neatly and legibly. 

•	 You are to hand in only the ANSWER booklet that is supplied. No additional pages 
will be considered in the grading. You may want to first work things through in the 
blank areas of this question booklet or on scratch paper, and then neatly transfer to the 
answer booklet the work you would like us to look at. Let us know if you need additional 
scratch paper. 



Problem 1 [15 points, 20 minutes] 

Provide brief answers, with appropriate justifications or computations, for each of the following 
parts. 

(a) Can a causal LTI state-space system that is not asymptotically stable become asymptotically 
stable under appropriate LTI state feedback even if some of its modes are unreachable? 

(b) Consider	 a continuous-time zero-mean wide-sense-stationary (WSS) random process x(t) 
whose power spectral density Sxx(jω) is  constant at the value N0 > 0 for frequencies |ω| < ωm 

and 0 outside this band. By considering the autocorrelation function Rxx(τ) of this process, 
one can see that for an appropriately chosen T the samples x(nT ) of the process constitute a 
discrete-time zero-mean WSS white process. Determine an appropriate T , and specify what 
the variance of the corresponding x(nT ) is.  

(c) Consider a minimum-error-probability hypothesis test to select between two Gaussians of 
the same variance σ2 but different means µ1 and µ2 > µ1, based on a single measurement 
drawn from one of these densities with equal probability. Use the standard Q(x) function to 
express the conditional probability of correctly detecting the Gaussian of mean µ2, and  also  
the conditional probability of falsely detecting this Gaussian. Recall that 

1 
� ∞ 

Q(x) =  √ e −t2/2 dt . 
2π x 

(d) If pulse-amplitude modulation is used to communicate a general discrete-time (DT) signal 
over a continuous-time lowpass channel whose transmission is bandlimited to |ω| < ωm, what 
is the highest symbol repetition rate that can be used before information about the DT signal 
is lost in the process? 



Problem 2 [20 points, 40 minutes] 

Suppose the zero-mean wide-sense stationary (WSS) process x[n] is obtained by applying a 
zero-mean WSS white process w[n] with power spectral density (PSD) Sww (ejΩ) =  σ2 to the input 

−1of a (stable, causal) filter with system function M (z) = 1  − 3z . 

(a) If Sxx(ejΩ) denotes the PSD of x[n], find Sxx(z). Also find the autocovariance function Cxx[m] 
of the process x[n], the variance of the random variable x[n+1], and the correlation coefficient 
ρ between x[n] and  x[n + 1].  

(b) Specify the linear minimum mean-square-error (LMMSE) estimator of x[n + 1] based on a 
measurement of x[n], and compute the associated mean-square-error (MSE). Is this MSE less 
than the variance of x[n + 1] that you computed in (a)? 

(c) Find the system function F (z) of a stable and causal filter whose inverse 1/F (z) is also stable 
and causal, and such that 

−1) .Sxx(z) =  F (z)F (z


Be careful with this part, because errors here will propagate to the next part!


(d) Find the system function of the causal Wiener filter that generates an estimate of x[n + 1]  
based on all past x[k], k ≤ n, i.e., find the system function of the one-step predictor. Do 
you expect that the MSE for this case will be less than or equal to or greater than what you 
computed in (b)? (You don’t need to actually determine the MSE; we are only interested in 
what your intuition is for the situation.) 
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Problem 3 [25 points, 45 minutes] 

A particular causal first-order discrete-time LTI system is governed by a model in state-space 
form: 

q[n + 1]  =  3q[n] +  x[n] +  d[n] 

where x[n] is a  known control input and d[n] is an  unknown wide-sense-stationary (WSS), zero-
mean, white-noise disturbance input with E( d2[n] )  =  σ
2 .d We would like to use an observer to 
construct an estimate q�[n] of  q[n], using the noisy output measurements 

y[n] = 2q[n] +  v[n] , 

where the measurement noise v[n] is also an  unknown WSS, zero-mean, white-noise process with 
E( v
2[n] ) 
=  σ
2 

v .
 Assume the measurement noise is uncorrelated with the system disturbance: 
E( v[n]d[k] )  =  0  for  all  n, k. 

(a) Specify which of the following equations you would implement as your (causal) observer, 
explaining your reasoning. In each case, " denotes the observer gain. 

(i) q�[n + 1]  =  3q�[n] +  x[n] +  d[n] − " ( y[n] − 2q�[n] − v[n] )  . 

(ii) q�[n + 1]  =  3q�[n] +  x[n] − " ( y[n] − 2q�[n] − v[n] )  . 

(iii) q�[n + 1]  =  3q�[n] +  x[n] − " ( y[n] − 2q�[n] )  . 

(iv) q�[n + 1]  =  3q�[n] − " ( y[n] − 2q�[n] )  . 

(v) q�[n + 1]  =  3q�[n] − " ( y[n] − 2q�[n] − v[n] )  . 

(vi) Something other than the above (specify). 

(b) Obtain a state-space model for the observer error, q�[n] =  q[n] − q�[n], writing it in the form 

q�[n + 1]  =  α q�[n] +  p[n] , 

with α and p[n] expressed in terms of the parameters and signals specified in the problem 
statement (but with p[n] not involving q�[n], of course). Check: If you have done things 
correctly, you should find that α = 0 when " = −
3 

2 .


(c) Determine the system function of the error system in (b) and the corresponding impulse 
response, i.e., find the system function and corresponding impulse response that relate q�[n] 
to the input p[n]. 

(d) Note that the input process p[n] in (b) is WSS and zero-mean. Determine its autocovariance 
function Cpp[m] in terms of parameters specified in the problem statement. 

(e) For " = − , determine the mean E( q�[n] [n] ),  ) of the observer error, its second moment E( q�
and its variance. 

3 
2 



(f) If we no longer fix " to have the value specified in (e), what constraints must " satisfy if the 
observer error q�[n] is to be a zero-mean WSS process (assuming the observer has been running 
since the beginning of time, i.e., starting infinitely far in the past) ? Verify that the choice of 
" in (e) satisfies the constraints that you specify here. 

(g) Assume the constraints on " that you specified in (f) are satisfied and that the observer has 
been running since the beginning of time. Find a general expression for the mean E( q�[n] )  of  

2the observer error, its second moment E( q� [n] ), and its variance. You might find it helpful 
to recall that ∞� 1 

α2k = .
1 − α2 

k=0 

(h) Given your error variance expression in (g), you could in principle try and choose the value 
of " that minimizes this error variance, but the calculations are messy in the general case. 
Instead, to simply get an idea of the possibilities, evaluate your expression here for the case 
σ2 = 0 and " = − 4 

3 , and show that the error variance in this case is smaller that what you d 

get (still for σ2 
d = 0) with the earlier choice in (e) of " = − 3 .2 
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Problem 4 [15 points, 25 minutes] 

A discrete-time LTI system has frequency response 

−jΩ/4H(ejΩ) =  e , |Ω| < π  .  

(a) Determine the phase angle � H(ejΩ) of the system. 

(b) If h[n] denotes the unit-sample response of the system, evaluate the following three expressions 
(you should be able to do this without first explicitly computing h[n]): 

∞ ∞
h[0] ; h[n] ;  (h[n])2 . 

n=−∞ n=−∞ 

(c) Determine h[n], and check that your answer yields the value of h[0] you computed in (b). Is 
the system causal or not? 

(d) If the input sequence x[n] to the above system is given by 

x[n] = 2
sin(πn/2) 

for n �= 0  , x[0] = 1 , (1)
πn 

find a simple and explicit expression for the output y[n] of the system. (Just expressing y[n] 
via a convolution sum will not do!) 



Problem 5 [25 points, 45 minutes] 

A signal  X[n] that we will be measuring for n = 1, 2 is known to be generated according to one 
of the following two hypotheses: 

Hno : X[n] =  W [n] 
Hyes : X[n] =  s[n] +  W [n] 

where s[1], s[2] are specified (deterministic) numbers, with 0 < s[i] ≤ 1 for  i = 1, 2, and where 
W [1], W [2] are i.i.d. random variables uniformly distributed in the interval [−1, 1] (and hence with 
mean 0 and variance
 1 

3). Given measurements x[1] and x[2] of X[1] and X[2] respectively, we would

like to decide between the hypotheses Hno and Hyes. 

Most of part (c) below can be done independently of parts (a) and (b). 

(a) One strategy for processing the measurements is to only look at a linear combination of the 
measurements, of the form 

r = g[1]x[1] + g[2]x[2] . 

To analyze decision schemes that are based on consideration of the number r, consider the 
random variable 

R = g[1]X[1] + g[2]X[2] . 

Determine the mean and variance of R under each of the hypotheses, and note that the 
variance does not depend on which hypothesis applies. (Note: you do not need to find 
the densities of R under the two hypotheses in order to find these conditional means and 
variances!) 

Now choose g[1] and g[2] to maximize the relative distance between these means, where 
“relative” signifies that the distance is to be measured relative to the standard deviation of 
R under hypothesis Hno (or, equivalently, under Hyes). Equivalently, maximize the following 
“signal-to-noise” ratio (SNR): � 

E[R|Hyes] − E[R|Hno] 
�2 

.
variance(R no)|H

(b) In the particular case where	 s[1] = s[2] = 1, which we shall focus on for the rest of this 
problem, it turns out that the choice g[1] = g[2] = c will serve, for any nonzero constant c, 
to maximize the SNR in (a). Taking c = 3, draw fully labeled sketches of the conditional 
densities of R under each of the hypotheses, i.e., sketches of fR|H(r|Hno) and  fR|H(r|Hyes). 

Suppose now that the prior probabilities on the two hypotheses are p(Hno) = 2 
3 and hence 

p(Hyes) = 1 
3 .
 Specify a decision rule that, on the basis of knowledge that R = r, decides


between Hno and Hyes with minimum probability of error. Also compute the probability of 
error associated with this decision rule. (It will probably help you to shade on the appropriate 
sketch the regions corresponding to the conditional probability of a false “yes” and to the 
conditional probability of a false “no”.) 



� � � � 

(c) If we did not hastily commit ourselves to working with a scalar measurement obtained by 
taking a linear combination of the measurements x[1] and x[2], we might perhaps have done 
better. Accordingly, first sketch or fully describe the conditional densities 

fX[1],X[2]|H x[1], x[2] | Hno and fX[1],X[2]|H x[1], x[2] | Hyes 

for the case where s[1] = s[2] = 1. Then specify a decision rule that will pick between the two 
hypotheses with minimum probability of error, on the basis of knowledge that X[1] = x[1] 

2and X[2] = x[2], and still with the prior probabilities specified in (b), namely p(Hno) =  3 
and hence p(Hyes) =  1 . Determine the probability of error associated with this decision rule, 3 
and compare with your result in (b). 


