# Massachusetts Institute of Technology <br> Department of Electrical Engineering and Computer Science <br> 6.011: Introduction to Communication, Control and Signal Processing 

QUIZ 1, March 15, 2005
Questions

| Your Full Name: |  |  |
| :---: | :--- | :--- |
| Recitation Instructor \& Time : |  | at |

- This quiz is closed book, but two sheets of notes are allowed. Calculators will not be necessary and are not allowed.
- Put your name in the space indicated above, and your recitation time next to the name of your instructor.
- The accompanying answer booklet has space for all answers, and for relevant reasoning. Check that the answer booklet has pages numbered up to 16 .
- Neat work and clear explanations count; show all relevant work and reasoning! You may want to first work things through on scratch paper and then neatly transfer to the answer booklet the work you would like us to look at. Let us know if you need additional scratch paper. Only the answer booklet will be considered in the grading; no additional answer or solution written elsewhere will be considered. Absolutely no exceptions!
- There are two problems, weighted as indicated on the quiz. The quiz will be graded out of 50 points.
- DO NOT DISCUSS THIS QUIZ WITH STUDENTS WHO HAVE NOT YET TAKEN IT TODAY!


## Problem 1 (20 points)

Suppose $x(t)=y(t) \cos \left(\omega_{o} t+\Theta\right)$, where: $y(t)$ is a wide-sense stationary (WSS) process with mean $\mu_{y}$ and autocovariance function $C_{y y}(\tau) ; \omega_{o}$ is a known constant; and $\Theta$ is a random variable that is independent of $y(\cdot)$ and is uniformly distributed in the interval $[0,2 \pi]$. Do part
(a) below especially carefully, because (b) and (c) depend on it to some extent!

You might find it helpful in one or more parts of the problem to recall that

$$
\cos (A) \cos (B)=\frac{1}{2}[\cos (A+B)+\cos (A-B)] .
$$

(a) (8 points) Find the mean $\mu_{x}(t)$ and autocorrelation function $E[x(t+\tau) x(t)]$ of the process $x(\cdot)$. Also find the cross-correlation function $E[y(t+\tau) x(t)]$. Explain precisely what features of your answers tell you that: (i) $x(\cdot)$ is a WSS process; and (ii) $x(\cdot)$ and $y(\cdot)$ are jointly WSS.
(b) (6 points) Suppose $C_{y y}(\tau)=e^{-|\tau|}$ and $\mu_{y} \neq 0$. Obtain an expression for the power spectral density (PSD) $S_{y y}(j \omega)$ in this case, and draw a fully labeled sketch of it. Also obtain an expression for the PSD $S_{x x}(j \omega)$, and draw a fully labeled sketch of it.
(c) (6 points) With the properties of $y(t)$ specified as in (b), is $y(t)$ ergodic in mean value? Be sure to give a reason for your answer! Also, is $x(t)$ ergodic in mean value? Again, describe your reasoning. If you are able to evaluate either of the following integrals on the basis of your answers here, please do so:

$$
\begin{gathered}
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} y(t) d t \\
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} y(t) \cos \left(w_{o} t+\Theta\right) d t
\end{gathered}
$$

where $y(t)$ and $\Theta$ here should be interpreted as the specific values taken by these quantities in a particular experiment (we could have used other symbols, but it would have required more notational effort and may not have ended up any clearer!).

## Problem 2 (30 points)

Let $y[n]$ be a wide-sense stationary (WSS) process with autocorrelation function

$$
R_{y y}[m]=9(\delta[m]-\alpha \delta[m-1]-\alpha \delta[m+1])
$$

where $\alpha>0$.
(a) (3 points) What is the largest value $\alpha$ can take? Explain your reasoning. If $\alpha$ is increased towards its maximum value, does the power of the signal shift to lower or higher frequencies?
(b) (4 points) Determine the following (expressed in terms of $\alpha$, if necessary):
(i) $E\{y[n]\}$ and $E\left\{y^{2}[n]\right\}$;
(ii) the correlation coefficient $\rho$ between $y[4]$ and $y[5]$.
(c) (4 points) Suppose we are told that we will be given the measurement $y[4]$, and we want to find the linear minimum mean-square-error (LMMSE) estimator of $y[5]$ in terms of $y[4]$. Find the estimator, and determine the associated (minimum) mean square error (MSE).
(d) (8 points) Suppose $x[n]=y[n]+w[n]$, where $w[n]$ is a white process that is uncorrelated with $y[\cdot]$ and has power spectral density $S_{w w}\left(e^{j \Omega}\right)=9 \alpha^{2}$. Determine the power spectral density $S_{x x}\left(e^{j \Omega}\right)$ and show that it can be written in the form

$$
S_{x x}\left(e^{j \Omega}\right)=K\left(1-\beta e^{-j \Omega}\right)\left(1-\beta e^{j \Omega}\right)
$$

for $K$ and $\beta$ that you should determine (expressed in terms of $\alpha$, if necessary). Also determine the cross-power spectral density $S_{y x}\left(e^{j \Omega}\right)$ in terms of $\alpha$.
(e) (5 points) Determine the frequency response $H\left(e^{j \Omega}\right)$ of the noncausal Wiener filter that produces the LMMSE estimate $\widehat{y}[n]$ of $y[n]$ in terms of measurements of the entire process $x[\cdot]$.
(f) (6 points) Determine the frequency response $G\left(e^{j \Omega}\right)$ of the causal Wiener filter that at time $n$ uses measurements of $x[k]$ for all present and past times $k \leq n$ to produce an LMMSE prediction of the measurement at the next step, i.e., an LMMSE estimate $\widehat{x}[n+1]$ of $x[n+1]$. Also determine the associated MSE.

