MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Answers to Exam 2 - Spring 2006

Problem 1: Graded by Prof. Fonstad

- a) i) A less than B, because K varies inversely with L.
 - ii) A similar to B, because the threshold voltage does not depend on L.
 - iii) A greater than B, because A has a smaller K and thus must be biased stronger.
 - iv) A less than B, because V_A is bigger for the longer device, and thus g_o is smaller.
 - v) A greater than B, because the area of the gate (WxL) is larger.
 - vi) A similar to B, because C_{gd} is proportional to the device width and that is the same in both devices.
- b) i) A less than B, because I_{ES} is dominated by N_{AB} and proportional to $1/N_{AB}$.
 - ii) A similar to B, because I_{CS} is dominated by N_{DC} and that is the same in both devices. A less than B was also accepted.
 - iii) A less than B, because the emitter defect increases with N_{AB} , and $\beta \approx 1/\delta_E$.
 - iv) A similar to B, because $g_m = qI_C/kT$ and is the same for both devices.
 - v) A less than B, because V_A increases as the doping increases, and $g_o = I_C / V_A$
 - vi) A similar to B, because C_{μ} is nominated by the collector doping, which is the same in both devices. A greater than B was also accepted.
- c) i) Essentially unchanged, because the sum of the n- and p-channel MOSFET gate areas is still $3W_{min}L_{min}$.
 - ii) Decreased, because the p-FET is now narrower and delivers less current.
 - iii) Increased, because the n-FET is now wider and can draw more current.
 - iv) Essentially unchanged, because the static power is zero. (Trick question?)
 - v) Essentially unchanged, because the logic HI voltage is still V_{DD} .
 - iv) One increased, one decreased, because the nearly vertical portion of the transfer characteristic is no longer centered about $V_{\text{DD}}/2$.

Problem 2: Graded by Prof. Hoyt

- a) $\beta_{\rm F} = i_{\rm C}/i_{\rm B} = 9.25 \text{ mA}/92.5 \ \mu \text{A} = 100$
- b) $\delta_{B} = 0$, because the lifetime is infinite, meaning the minority carrier diffusion length is also infinite.
- c) The factor in question appears in the emitter defect expression, and we can find the emitter defect because we know β_F and $\beta_F \approx 1/\delta_E$, when δ_B is negligible, as it is here:

 β_F and $\beta_F \approx 1/\delta_E = (D_e W_{E,eff} N_{DE})/(D_h W_{B,eff} N_{AB}) = (D_e/D_h) r$, so $r = \beta_F (D_e/D_h) = 50$

Use the Gummel plot to find a value for I_{ES} , and then use I_{ES} to find N_{AB} : d)

$$I_{C} \approx I_{ES} \exp (qV_{BE}/kT), \text{ and } I_{ES} \approx Aqn_{i}^{2}(D_{e}/W_{B,eff}N_{AB}),$$

so $N_{AB} = Aqn_{i}^{2}(D_{e}/W_{B,eff}I_{C}) \exp (qV_{BE}/kT) = 1 \times 10^{17} \text{ cm}^{-3}$

With the results of Parts (c) and (d), we find $N_{DE} = r W_{B,eff} N_{AB} / W_{E,eff} = 1 \times 10^{19} \text{ cm}^{-3}$ e)

WB

Problem 3: Graded by John Hennessey for Prof. Antoniadis a) $V_{FB} = -(\phi_{n+} - \phi_p) = -[0.54 - (-0.3)] = -0.84 \text{ V}$

b)

- c) $x_p = x_A = (2 \epsilon_{Si} \Delta \phi / q N_A)^{1/2} = 10 \text{ nm.}$ We find $\Delta \phi = 0.08 \text{ V}$ The assumption <u>is justified</u> because the total potential change, which is $|V_{FB}|$, is much greater than this value.
- d) i) Electric field:

e) Neglecting qN_Ax_A relative to Q_n' and Q_p' , then $Q_p' \approx Q_n'$. The situation looks like a parallel plate capacitor with two different dielectrics. The total potential drop from $x = -x_{ox}$ to $x = x_A$ is V_{FB} , or 0.84 V. The drop across the oxide is $Q_p'x_{ox}/\epsilon_{ox}$ and that across the silicon is $Q_p'x_{Si}/\epsilon_{Si}$. Adding these together and setting them equal to V_{FB} , $Q_p'x_{ox}/\epsilon_{ox} + Q_p'x_{Si}/\epsilon_{Si} = V_{FB}$, we find

$$Q_{p}' = V_{FB} / (x_{ox} / \epsilon_{ox} + x_{Si} / \epsilon_{Si}) = 3.5 \text{ x } 10^{-7} \text{ C} / \text{ cm}^{2}$$

f) The charge in the depleted lightly doped p-region is:

$$-qN_A x_A = 1.6 \times 10^{-19} 10^{15} 10^{-6} = -1.6 \times 10^{-10} \text{ coul/cm}^2$$

This is much less than Q_p ', so it neglecting it was a good approximation.

Average/Standard deviation:	Problem 1	28.7	4.6
	Problem 2	18.5	6.1
	Problem 3	<u>14.7</u>	<u>5.5</u>
	Total	62.0	12.7

Distribution to nearest 5:

Find your face in this picture

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.