MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Answers to Exam 2 - Fall 2009

Problem 1: Graded by Prof. Fonstad

a) i) Applying $\mathrm{v}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{T}}$ to an n -channel MOSFET accumulates additional holes at the interface. The additional amount of interface charge is $-\mathrm{WLC}_{\mathrm{ox}}{ }^{*}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)=-5 \mathrm{x}$ $10^{-4} \times 2 \times 10^{-5} \times 10^{-8} \times 1=10^{-16}$ Coul.
ii) The additional holes come from the p-type bulk region.
iii) Applying $\mathrm{v}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{FB}}$ to an n -channel MOSFET increases the number of inversion layer electrons at the interface. The additional charge is $-\mathrm{WLC}_{\mathrm{ox}}{ }^{*}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{FB}}\right)=5 \mathrm{x}$ $10^{-4} \times 2 \times 10^{-5} \times 10^{-8} \times 1=10^{-16}$ Coul.
iv) The additional electrons come from the n-type source and drain regions.
b) i) One of the $n+$ regions (source or drain) is the emitter, the other $n+$ region is the collector, and the base is the p-region, or substrate. To bias an npn BJT in its forward active region requires $\mathrm{V}_{\mathrm{CE}} \geq 0.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}} \approx 0.6$ to 0.7 V . Saying both had to be greater than zero was accepted and earned most of the points.
ii) The forward current gain, β_{F}, is low because a large fraction of the electrons injected across the emitter-base diode into the p-region are directed vertically and not laterally toward the collector.
The early voltage is low, and thus there is a significant amount of base width modulation, because the collector is more heavily doped than the base, meaning that the depletion region at the collector-base junction extends primarily into the base side of the junction.
iii) Adding a heavily doped p-type region under the $n+$ regions reduces the vertical injection of electrons across the emitter-base junction and the junction current is now predominantly electrons flowing laterally across the junction and toward the relatively close collector. This makes β_{F} much larger.
c) i) Doing a Taylor's Series expansion about Q, and isolating the small signal terms:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{d}}=\left.\left(\mathrm{di}_{\mathrm{D}} / \mathrm{dv}_{\mathrm{GS}}\right)\right|_{\mathrm{Q}} \mathrm{v}_{\mathrm{gs}}+\left.\left(\mathrm{di}_{\mathrm{D}} / \mathrm{dv}_{\mathrm{DS}}\right)\right|_{\mathrm{Q}} \mathrm{v}_{\mathrm{ds}} \\
&=(\mathrm{W} / \mathrm{L}) \mu_{\mathrm{e}}\left[\mathrm{C}_{\mathrm{ox}}{ }^{*} \mathrm{~V}_{\mathrm{DS}} \mathrm{v}_{\mathrm{gs}}+\left(\mathrm{C}_{\mathrm{ox}}^{*} V_{\mathrm{GS}}+\alpha\right) \mathrm{v}_{\mathrm{ds}}\right]
\end{aligned}
$$

ii) The small signal linear equivalent circuit is:

with $\mathrm{g}_{\mathrm{m}}=(\mathrm{W} / \mathrm{L}) \mu_{\mathrm{e}} \mathrm{C}_{\mathrm{ox}}{ }^{*} \mathrm{~V}_{\mathrm{DS}}$ and $\mathrm{g}_{\mathrm{o}}=(\mathrm{W} / \mathrm{L}) \mu_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{ox}}{ }^{*} \mathrm{~V}_{\mathrm{GS}}+\alpha\right)$
iii) To find R_{L} we first find $I_{D}=10^{-7}\left(10 \mathrm{~V}_{\mathrm{GS}}+1\right) \mathrm{V}_{\mathrm{DS}}$ with $\mathrm{V}_{\mathrm{GS}}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DS}}=1.5 \mathrm{~V}$, or $\mathrm{I}_{\mathrm{D}}=1.65 \times 10^{-6} \mathrm{Amps}$. The voltage drop across R_{L} must be 1.5 V , so

$$
\mathrm{R}_{\mathrm{L}}=1.5 /\left(1.65 \times 10^{-6}\right) \approx 900,000 \mathrm{Ohms}
$$

We can now use this result and our linear equivalent circuit to draw the linear equivalent circuit for the full circuit, and from that we find the voltage gain:

We find $g_{m}=1.5 \times 10^{-6}$ mho and $g_{o}=1.1 \times 10^{-6} \mathrm{mho}$, and using the R_{L} above we have $1 / R_{L}=G_{L}=1.1 \times 10^{-6} \mathrm{mho}$. Thus, $A_{v}=v_{\text {out }} / v_{\text {in }}=-g_{m} /\left(g_{o}+G_{L}\right) \approx-0.7$.

Problem 2: Graded by Prof. Weinstein
a) In flatband there is no depletion region, $\phi(0)=\phi_{n}$, and there is no voltage drop across the dielectric.

As indicated in the figure, $\mathrm{V}_{\mathrm{FB}}=1.5 \phi_{\mathrm{n}}$.
b) At flatband the hole and electron populations are the same as they are in the bulk of the semiconductor. Thus, $n\left(x=0^{+}\right)=N_{D}$, and $p\left(x=0^{+}\right)=n_{i}^{2} / N_{D}$.
c) At the onset of threshold $\phi(0)=-\phi_{n}$, the depletion region accommodates a change in potential of $2 \phi_{\mathrm{n}}$ and thus $\mathrm{X}_{\mathrm{D}}=\left[2 \varepsilon_{\mathrm{Si}_{\mathrm{i}}}\left(2 \phi_{\mathrm{n}}\right) / \mathrm{qN}_{\mathrm{D}}\right]^{1 / 2}$. The potential drop across the dielectric $\mathrm{qN}_{\mathrm{D}} \mathrm{X}_{\mathrm{D}} \mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}$, and $\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{FB}}=-2 \phi_{\mathrm{n}}-\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)\left[2 \varepsilon_{\mathrm{Si}}\left(2 \phi_{\mathrm{n}}\right) \mathrm{qN}_{\mathrm{D}}\right]^{1 / 2}$.

With these results, we find $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{FB}}-2 \phi_{\mathrm{n}}-\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)\left[2 \varepsilon_{\mathrm{Si}}\left(2 \phi_{\mathrm{n}}\right) \mathrm{qN}_{\mathrm{D}}\right]^{1 / 2}$

$$
=-0.5 \phi_{\mathrm{n}}-\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)\left[2 \varepsilon_{\mathrm{Si}}\left(2 \phi_{\mathrm{n}}\right) \mathrm{qN}_{\mathrm{D}}\right]^{1 / 2}
$$

The electrostatic potential profile at the onset of inversion:

The net charge distribution at the onset of inversion:

d) At the onset of inversion, the hole density at the interface is N_{D}, i.e. $p\left(x=0^{+}\right)=N_{D}$, and $n\left(x=0^{+}\right)=n_{i}^{2} / N_{D}$.
e) If there is a net sheet charge density, σ_{i}, at the interface, then at flatband there is a net sheet charge density, $-\sigma_{i j}$ on the gate, and no other charge in semiconductor up to the interface. The voltage drop across the gate dielectric is $\sigma_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)$, and the flatband voltage must be more negative by this amount, $\Delta \mathrm{V}_{\mathrm{FB}}=-\sigma_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)$. The threshold voltage will be more negative by this same amount: $\Delta \mathrm{V}_{\mathrm{T}}=-\sigma_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)$.
f) With an additional dielectric layer under the gate, there is additional voltage drop across the insulator for the same charge on the gate: $\Delta \mathrm{V}$ (w.o. $\left.\mathrm{SiO}_{2}\right)=\mathrm{Q}_{\mathrm{G}}\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)$ and $\Delta \mathrm{V}\left(\mathrm{w} . \mathrm{SiO}_{2}\right)=\mathrm{Q}_{\mathrm{G}}\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}\right)+\mathrm{Q}_{\mathrm{G}}\left(\mathrm{t}_{\mathrm{ox}} / \varepsilon_{\mathrm{ox}}\right) . \quad \mathrm{C}_{\mathrm{G}}=\mathrm{Q}_{\mathrm{G}} / \Delta \mathrm{V}=1 /\left(\mathrm{t}_{\mathrm{hi}} / \varepsilon_{\mathrm{hi}}+\mathrm{t}_{\mathrm{ox}} / \varepsilon_{\mathrm{ox}}\right)=$ $\varepsilon_{\text {hi }} / 2 t_{\text {hi }}$. Thus $\mathrm{C}_{\mathrm{G}}\left(\right.$ w. $\left.\mathrm{SiO}_{2}\right) / \mathrm{C}_{\mathrm{G}}\left(\right.$ w.o. $\left.\mathrm{SiO}_{2}\right)=1 / 2$.

Problem 3: Graded by Prof. Palacios
a) $\mathrm{I}_{\mathrm{D}, \text { sat }}=\left(\mathrm{W}_{\text {min }} / 2 \mathrm{~L}_{\text {min }}\right) \mu_{\mathrm{e}}\left(\varepsilon_{\mathrm{ox}} / \mathrm{t}_{\mathrm{ox}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left[1+\lambda_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{DS}, \text { sat }}\right)\right]$

$$
=[135 /(2 \times 35)] \times 500 \times\left(3.5 \times 10^{-13} / 10^{-7}\right)(0.6)^{2}(1+0.001(1-0.4)) \approx 1.2 \mathrm{~mA}
$$

b) $\mathrm{r}_{\mathrm{o}}=1 / \mathrm{g}_{\mathrm{o}}=1 / \lambda_{\mathrm{n}} \mathrm{I}_{\mathrm{D}}=1 /\left(10^{-3} \times 1.2 \times 10^{-3}\right)=10^{-6} / 1.2 \approx 800,000 \mathrm{Ohms}$
c) $\quad \begin{array}{lll}\mathrm{V}_{\text {IN } 1} & \mathrm{~V}_{\text {IN } 2} \quad \mathrm{~V}_{\text {OUT }}\end{array}$
$0 \mathrm{~V} \quad 0 \mathrm{~V} \quad 1 \mathrm{~V}$
$0 \mathrm{~V} \quad 1 \mathrm{~V} \quad 1 \mathrm{~V}$
$1 \mathrm{~V} \quad 0 \mathrm{~V} \quad 1 \mathrm{~V}$
$1 \mathrm{~V} \quad 1 \mathrm{~V} \quad 0 \mathrm{~V}$
d) $\mathrm{W}_{\mathrm{n}, \text { Inverter }}=1 \mathrm{~W}_{\text {min }}$ and $\mathrm{W}_{\mathrm{p} \text {, Inverter }}=\left(\mu_{\mathrm{e}} / \mu_{\mathrm{h}}\right) \mathrm{W}_{\mathrm{n} \text {, Inverter }}=(500 / 200) \mathrm{W}_{\min }=2.5 \mathrm{~W}_{\text {min }}$
e) We want the n-MOSFETs to each be minimum length since the effective length will be the sum of the lengths of two n-MOSFETs: $L_{n, \text { NAND }}=1 L_{\text {min }}$. and $L_{n, \text { Eff }}=2 L_{\text {min }}$. To minimize the delay, we will require the same current capability as in a standard inverter. To achieve this with an effective gate length $L_{n, E f f}=2 L_{\text {min }}$, the width needs to be $W_{\mathrm{n}, \text { NAND }}=2 \mathrm{~W}_{\text {min }}$.
As the current capability of the n-MOS branch is the same as in an inverter, the pMOS branch can be sized as in the inverter in question d). Thus $\mathrm{C}_{\mathrm{IN}, \mathrm{NAND}}=$ $2.5 \mathrm{~W}_{\min } \mathrm{L}_{\text {min }}+2 \mathrm{~W}_{\text {min }} \mathrm{L}_{\text {min }}=4.5 \mathrm{~W}_{\text {min }} \mathrm{L}_{\text {min }} . \mathrm{C}_{\mathrm{IN}, \text { Inverter }}=\mathrm{W}_{\text {min }} \mathrm{L}_{\text {min }}+2.5 \mathrm{~W}_{\text {min }} \mathrm{L}_{\text {min }}=3.5$ $\mathrm{W}_{\text {min }} \mathrm{L}_{\text {min }}$ so $\mathrm{C}_{\text {IN,NAND }}=1.29 \mathrm{C}_{\text {IN,Inverter }}$.
f) The question speaks of inverter equivalents. The inverters have 15 nA leakage if their output is high ($\mathrm{n}-\mathrm{MOS}$ off), and 37.5 nA leakage if their output is low (p MOS, which is 2.5 x as wide, off) so the static power dissipation is 15 nA / gate x 1 $\mathrm{V} \times 10^{9}$ gates $+37.5 \mathrm{nA} /$ gate $\times 1 \mathrm{~V} \times 10^{9}$ gates $=47.5$ Watts!

If you did the problem assuming 10^{9} NAND gates, then the output is low, we have subthreshold current coming from each one of the two p-MOSFETs, which are connected in parallel. Therefore, the power dissipation is: 2 transistors/gate x 15 $\mathrm{nA} /$ transistor $\times 1 \mathrm{~V} \times\left(1 \times 10^{9}\right)$ gates $=30$ Watts. When the output is high, the leakage current is due to the subthreshold current through the n-MOSFETs, which are connected in series and the current is dominated by one of them (i.e. they share the same current). Thus, the power dissipation in this state is: 1 transistor/gate x $15 \mathrm{nA} /$ transistor $\times 1 \mathrm{~V} \mathrm{x}\left(1 \times 10^{9}\right)$ gates $=15$ Watts. By adding the two contributions, the total dissipated power is: $30 \mathrm{~W}+15 \mathrm{~W}=45 \mathrm{~W}$
g)
) $\mathrm{E}_{\mathrm{ave}}=1 \mathrm{~V} /\left(35 \times 10^{-7} \mathrm{~cm}\right) \approx 3 \times 10^{5} \mathrm{~V} / \mathrm{cm}$
ii) The average sheet charge density is $\mathrm{q}_{\mathrm{n}}{ }^{*}=\mathrm{C}_{\mathrm{ox}}{ }^{*}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)=0.6\left(\varepsilon_{\mathrm{ox}} / \mathrm{t}_{\mathrm{ox}}\right)=0.6 \times 3.5 \mathrm{x}$ $10^{-6}=2.1 \times 10^{-6} \mathrm{coul} / \mathrm{cm}^{2}$. The current, $\mathrm{i}_{\mathrm{D}}=\mathrm{W} \mathrm{q}_{\mathrm{n}}{ }^{*} \mathrm{~s}_{\mathrm{ch}, \text { ave }}$. Assuming $\mathrm{i}_{\mathrm{D}}=250 \mu \mathrm{~A}$, we have: $\mathrm{s}_{\mathrm{ch}, \mathrm{ave}}=\mathrm{i}_{\mathrm{D}} /\left(\mathrm{W} \mathrm{q}_{\mathrm{n}}{ }^{*}\right)=2.5 \times 10^{-4} /\left(1.35 \times 10^{-5} \times 2.1 \times 10^{-6}\right) \approx 0.88 \times 10^{7} \mathrm{~cm} / \mathrm{s}$.
Assuming $\mathrm{i}_{\mathrm{D}}=1.2 \mathrm{~mA}$ as found in part (a), we find: $\mathrm{s}_{\mathrm{ch}, \text { ave }} \approx 4.2 \times 10^{7} \mathrm{~cm} / \mathrm{s}$.
iii) The current is almost 5 times smaller than the low field constant mobility model predicts because the velocity saturates at just under $10^{7} \mathrm{~V} / \mathrm{cm}$.

Exam Statistics

Average/Standard deviation:	Problem 1	21.5	5.3
	Problem 2	19.2	7.6
	Problem 3	$\underline{\mathbf{2 5 . 1}}$	$\underline{5.5}$
	Total	$\mathbf{6 5 . 8}$	$\mathbf{1 4 . 9}$

Class median: 65

Distribution to nearest 5:

Find your face in this picture

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

