6.012 - Electronic Devices and Circuits

Lecture 5 - p-n Junction Injection and Flow - Outline

• Review

Depletion approximation for an abrupt p-n junction Depletion charge storage and depletion capacitance (Rec. Fri.) $q_{DP}(v_{AB}) = -AqN_{Ap}x_{p} = -A[2\epsilon q(\phi_{b}-v_{AB})\{N_{Ap}N_{Dn}/(N_{Ap}+N_{Dn})\}]^{1/2}$ $C_{dp}(V_{AB}) \equiv \partial q_{DP}/\partial v_{AB}|_{V_{AB}} = A[\epsilon q\{N_{Ap}N_{Dn}/(N_{Ap}+N_{Dn})\}/2(\phi_{b}-V_{AB})]^{1/2}$

• Biased p-n Diodes

Depletion regions change Currents flow: two components

(Lecture 4)

- flow issues in quasi-neutral regions
- boundary conditions on p' and n' at $-x_p$ and x_n

(Today) (Lecture 6)

Minority carrier flow in quasi-neutral regions

The importance of minority carrier diffusion Boundary conditions Minority carrier profiles and currents in QNRs

- Short base situations
- Long base situations
- Intermediate situations

<u>The Depletion Approximation</u>: an informed first estimate of $\rho(x)$

<u>Assume full depletion for $-x_p < x < x_n$ </u>, where x_p and x_n are two unknowns yet to be determined. This leads to:

$$\rho(x) = \begin{cases}
0 & \text{for } x < -x_p \\
-qN_{Ap} & \text{for } -x_p < x < 0 \\
qN_{Dn} & \text{for } 0 < x < x_n \\
0 & \text{for } x_n < x
\end{cases} \xrightarrow{-x_p} \xrightarrow{-x_p} x_n \xrightarrow{-x_p}$$

Integrating the charge once gives the electric field

$$E(x) = \begin{cases} 0 & \text{for} \quad x < -x_p \\ -\frac{qN_{Ap}}{\varepsilon_{Si}} (x + x_p) & \text{for} \quad -x_p < x < 0 \\ \frac{qN_{Dn}}{\varepsilon_{Si}} (x - x_n) & \text{for} \quad 0 < x < x_n \\ 0 & \text{for} \quad x_n < x \end{cases} \xrightarrow{E(x)} E(0) = -qN_{Ap}x_p/\varepsilon_{Si} \\ = -qN_{Dn}x_n/\varepsilon_{Si} \end{cases}$$

Clif Fonstad, 9/24/09

The Depletion Approximation, cont.:

Integrating again gives the electrostatic potential:

Insisting E(x) is continuous at x = 0 yields our first equation relating our unknowns, x_n and x_p : - x_p - x_p - x_n

$$N_{Ap}x_p = N_{Dn}x_n$$
 1

 $E(0) = -qN_{Ap}x_p/\epsilon_{Si}$ $= -qN_{Dn}x_n/\epsilon_{Si}$

Requiring that the potential be continuous at x = 0 gives us our second relationship between x_n and x_p :

$$\phi_p + \frac{qN_{Ap}}{2\varepsilon_{Si}} x_p^2 = \phi_n - \frac{qN_{Dn}}{2\varepsilon_{Si}} x_n^2$$
 2

Clif Fonstad, 9/24/09

<u>Comparing the depletion approximation</u> with a full solution:

Courtesy of Prof. Peter Hagelstein. Used with permission.

Depletion approximation: Applied bias

<u>Note</u>: With applied bias we are no longer in thermal equilibrium so it is no longer true that $n(x) = n_i e^{q\phi(x)/kT}$ and $p(x) = n_i e^{-q\phi(x)/kT}$.

The Depletion Approximation: Applied bias, cont.

Adding v_{AB} to our earlier sketches: assume reverse bias, $v_{AB} < 0$

Clif Fonstad, 9/24/09

The Depletion Approximation: comparison cont.

Lecture 5 - Slide 7

Courtesy of Prof. Peter Hagelstein. Used with permission.

The Depletion Approximation: comparison cont.

Courtesy of Prof. Peter Hagelstein. Used with permission.

Lecture 5 - Slide 8

The value of the depletion approximation

The plots look good, but equally important is that

- 1. It gives an excellent model for making hand calculations and gives us good values for quantities we care about:
 - Depletion region width
 - Peak electric field
 - Potential step
- 2. It gives us the proper dependences of these quantities on the doping levels (relative and absolute) and the bias voltage.

Apply bias; what happens?

Two things happen

- **1. The depletion width changes**
 - (ϕ_b v_{AB}) replaces ϕ_b in the Depletion Approximation Eqs.

2. Currents flow

• This is the main topic of today's lecture

<u>Depletion capacitance</u>: Comparing depletion charge stores with a parallel plate capacitor

Parallel plate capacitor

$$q_{A,PP} = A \frac{\varepsilon}{d} v_{AB}$$

$$C_{pp}(V_{AB}) \equiv \frac{\partial q_{A,PP}}{\partial v_{AB}} \bigg|_{v_{AB} = V_{AB}}$$

Many similarities; important differences.

Depletion region charge store

$$q_{A,DP}(v_{AB}) = -AqN_{Ap}x_p(v_{AB})$$

$$= -A \sqrt{2q\varepsilon_{Si} \left[\phi_b - v_{AB}\right] \frac{N_{Ap} N_{Dn}}{\left[N_{Ap} + N_{Dn}\right]}}$$

$$C_{dp}(V_{AB}) = \frac{\partial q_{A,DP}}{\partial v_{AB}}\Big|_{v_{AB} = V_{AB}}$$

$$= A \sqrt{\frac{q\varepsilon_{Si}}{2[\phi_b - V_{AB}]} \frac{N_{Ap}N_{Dn}}{[N_{Ap} + N_{Dn}]}}$$

Clif Fonstad, 9/24/09

Lecture 5 - Slide 10

Bias applied, cont.: With $v_{AB} \neq 0$, it is not true that $n(x) = n_i e^{q\phi(x)/kT}$ and $p(x) = n_i e^{-q\phi(x)/kT}$ because we are no longer in TE. However, outside of the depletion region things are in quasi-equilibrium, and we can define local electrostatic potentials for which the equilibrium relationships hold for the majority carriers, assuming LLI.

Clif Fonstad, 9/24/09

Clif Fonstad, 9/24/09

Current flow: finding the relationship between i_{D} and v_{AB}

There are two pieces to the problem:

- Minority carrier flow in the QNRs is what limits the current.
- <u>Carrier equilibrium across the SCR</u> determines $n'(-x_p)$ and $p'(x_n)$, the boundary conditions of the QNR minority carrier flow problems.

Solving the five equations: special cases we can handle

1. Uniform doping, thermal equilibrium (n_op_o product, n_o, p_o):

$$\frac{\partial}{\partial x} = 0, \quad \frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad J_e = J_h = 0$$
 Lecture 1

2. Uniform doping and E-field (drift conduction, Ohms law):

$$\frac{\partial}{\partial x} = 0, \quad \frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad E_x \text{ constant}$$
 Lecture 1

3. Uniform doping and uniform low level optical injection (τ_{min}):

$$\frac{\partial}{\partial x} = 0, \quad g_L(t), \quad n' \ll p_o$$
 Lecture 2

3'. Uniform doping, optical injection, and E-field (photoconductivity):

$$\frac{\partial}{\partial x} = 0, \quad E_x \text{ constant}, \quad g_L(t)$$
 Lecture 2

4. Non-uniform doping in thermal equilibrium (junctions, interfaces)

$$\frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad J_e = J_h = 0$$
 Lectures 3,4

5. Uniform doping, non-uniform LL injection (QNR diffusion)

$$\frac{\partial N_d}{\partial x} = \frac{\partial N_a}{\partial x} = 0, \quad n' \approx p', \quad n' << p_o, \quad J_e \approx q D_e \frac{\partial n'}{\partial x}, \quad \frac{\partial}{\partial t} \approx 0$$
Lecture 5

Clif Fonstad, 9/24/09

QNR Flow: Uniform doping, non-uniform LL injection

What we have:

Five things we care about (i.e. want to know):

Hole and electron concentrations:p(x,t) and n(x,t)Hole and electron currents: $J_{hx}(x,t)$ and $J_{ex}(x,t)$ Electric field: $E_x(x,t)$

And, <u>five equations</u> relating them:

$$\begin{aligned} \text{Hole continuity:} \quad & \frac{\partial p(x,t)}{\partial t} + \frac{1}{q} \frac{\partial J_h(x,t)}{\partial x} = G - R \approx G_{ext}(x,t) - \left[n(x,t)p(x,t) - n_i^2\right]r(t) \\ \text{Electron continuity:} \quad & \frac{\partial n(x,t)}{\partial t} - \frac{1}{q} \frac{\partial J_e(x,t)}{\partial x} = G - R \approx G_{ext}(x,t) - \left[n(x,t)p(x,t) - n_i^2\right]r(t) \\ \text{Hole current density:} \quad & J_h(x,t) = q\mu_h p(x,t)E(x,t) - qD_h \frac{\partial p(x,t)}{\partial x} \\ \text{Electron current density:} \quad & J_e(x,t) = q\mu_e n(x,t)E(x,t) + qD_e \frac{\partial n(x,t)}{\partial x} \\ \text{Charge conservation:} \quad & \rho(x,t) = \frac{\partial \left[\varepsilon(x)E_x(x,t)\right]}{\partial x} \approx q \left[p(x,t) - n(x,t) + N_d(x) - N_a(x)\right] \end{aligned}$$

We can get approximate analytical solutions if <u>5 conditions</u> are met! Clif Fonstad, 9/24/09 **QNR Flow, cont.**: Uniform doping, non-uniform LL injection **Five unknowns, five equations, five flow problem conditions:**

- 1. Uniform doping $\frac{dn_o}{dx} = \frac{dp_o}{dx} = 0 \implies \frac{\partial n}{\partial x} = \frac{\partial n'}{\partial x}, \quad \frac{\partial p}{\partial x} = \frac{\partial p'}{\partial x}$ $p_o - n_o + N_d - N_a = 0 \implies \rho = q(p - n + N_d - N_a) = q(p' - n')$ 2. Low level injection (in p-type, for example) $n' << p_o \implies (np - n_i^2)r \approx n'p_or = \frac{n'}{\tau_e}$
- 3. <u>Quasineutrality holds</u> $n' \approx p', \quad \frac{\partial n'}{\partial x} \approx \frac{\partial p'}{\partial x}$
- 4. <u>Minority carrier drift is negligible</u> (continuing to assume p-type) $J_e(x,t) \approx qD_e \frac{\partial n'(x,t)}{\partial x}$

Note: It is also always true that
$$\frac{\partial n}{\partial t} = \frac{\partial n'}{\partial t}, \quad \frac{\partial p}{\partial t} = \frac{\partial p'}{\partial t}$$

Clif Fonstad, 9/24/09

QNR Flow, cont.: Uniform doping, non-uniform LL injection

With these first four conditions our five equations become: (assuming for purposes of discussion that we have a p-type sample)

$$1,2: \quad \frac{\partial p'(x,t)}{\partial t} + \frac{1}{q} \frac{\partial J_h(x,t)}{\partial x} = \frac{\partial n'(x,t)}{\partial t} - \frac{1}{q} \frac{\partial J_e(x,t)}{\partial x} = g_L(x,t) - \frac{n'(x,t)}{\tau_e}$$

$$3: \quad J_e(x,t) \approx +qD_e \frac{\partial n'(x,t)}{\partial x}$$

$$4: \quad J_h(x,t) = q\mu_h p(x,t)E(x,t) + qD_h \frac{\partial p'(x,t)}{\partial x}$$

$$5: \quad \frac{\partial E(x,t)}{\partial x} = \frac{q}{\varepsilon} [p'(x,t) - n'(x,t)]$$

In preparation for continuing to our fifth condition, we note that combining Equations 1 and 3 yields one equation in n'(x,t): $\partial n'(x,t) = \partial^2 n'(x,t)$

$$\frac{\partial n'(x,t)}{\partial t} - D_e \frac{\partial^2 n'(x,t)}{\partial x^2} = g_L(x,t) - \frac{n'(x,t)}{\tau_e}$$

$$\checkmark \text{ The time dependent diffusion equation}$$

Clif Fonstad, 9/24/09

QNR Flow, cont.: Uniform doping, non-uniform LL injection

The time dependent diffusion equation, which is repeated below, is in general still very difficult to solve

$$\frac{\partial n'(x,t)}{\partial t} - D_e \frac{\partial^2 n'(x,t)}{\partial x^2} = g_L(x,t) - \frac{n'(x,t)}{\tau_e}$$

but things get much easier if we impose a fifth constraint:

5. <u>Quasi-static excitation</u> $g_L(x,t)$ such that all $\frac{\partial}{\partial t} \approx 0$

With this constraint the above equation becomes a second order linear differential equation:

$$-D_{e}\frac{d^{2}n'(x)}{dx^{2}} = g_{L}(x) - \frac{n'(x)}{\tau_{e}}$$

which in turn becomes, after rearranging the terms :

$$\frac{d^2n'(x)}{dx^2} - \frac{n'(x)}{D_e\tau_e} = -\frac{1}{D_e}g_L(x)$$
✓ The steady state diffusion equation

Clif Fonstad, 9/24/09

The steady state diffusion equation in p<u>-type</u> material is:

$$\frac{d^2n'(x)}{dx^2} - \frac{n'(x)}{L_e^2} = -\frac{1}{D_e}g_L(x)$$

and for <u>n-type</u> material it is:

$$\frac{d^2 p'(x)}{dx^2} - \frac{p'(x)}{L_h^2} = -\frac{1}{D_h} g_L(x)$$

In writing these expressions we have introduced L_e and L_h, the minority carrier diffusion lengths for holes and electrons, as: $L_{e} \equiv \sqrt{D_{e}\tau_{e}}$ $L_{h} \equiv \sqrt{D_{h}\tau_{h}}$

We'll see that the minority carrier diffusion length tells us how far the average minority carrier diffuses before it recombines.

In a basic p-n diode, we have $g_L = 0$ which means we only need the homogenous solutions, i.e. expressions that satisfy:

$$\frac{\text{n-side:}}{dx^2} \frac{d^2 p'(x)}{dx^2} - \frac{p'(x)}{L_h^2} = 0 \qquad \frac{\text{p-side:}}{dx^2} \frac{d^2 n'(x)}{dx^2} - \frac{n'(x)}{L_e^2} = 0$$

Lecture 5 - Slide 19

Clif Fonstad, 9/24/09

For convenience, we focus on the <u>n-side</u> to start with and find p'(x) for $x_n \le x \le w_n$. p'(x) satisfies

$$\frac{d^2p'(x)}{dx^2} = \frac{p'(x)}{L_h^2}$$

subject to the boundary conditions:

 $p'(w_n) = 0$ and $p'(x_n) =$ something we'll find next time

The general solution to this static diffusion equation is:

$$p'(x) = Ae^{-x/L_h} + Be^{+x/L_h}$$

where A and B are constants that satisfy the boundary conditions. Solving for them and putting them into this equation yields the final general result:

$$p'(x) = \frac{p'(x_n)e^{(w_n - x_n)/L_h}}{e^{(w_n - x_n)/L_h} - e^{-(w_n - x_n)/L_h}} e^{-(x - x_n)/L_h} - \frac{p'(x_n)e^{-(w_n - x_n)/L_h}}{e^{(w_n - x_n)/L_h} - e^{-(w_n - x_n)/L_h}} e^{+(x - x_n)/L_h}$$
for $x_n \le x \le w_n$

Clif Fonstad, 9/24/09

We seldom care about this general result. Instead, we find that most diodes fall into one of two cases:

Case I - Long-base diode: $w_n >> L_h$ **Case II -** Short-base diode: $L_h >> w_n$

<u>Case I</u>: When w_n >> L_h, which is the situation in an LED, for example, the solution is

$$p'(x) \approx p'(x_n) e^{-(x-x_n)/L_h}$$
 for $x_n \le x \le w_n$

This profile decays from $p'(x_n)$ to 0 exponentially as $e^{-x//L_h}$.

The corresponding hole current for $x_n \le x \le w_n$ in Case I is

$$J_h(x) \approx -qD_h \frac{dp'(x)}{dx} = \frac{qD_h}{L_h} p'(x_n) e^{-(x-x_n)/L_h} \quad \text{for} \quad x_n \le x \le w_n$$

The current decays to zero also, indicating that all of the excess minority carriers have recombined before getting to the contact.

Clif Fonstad, 9/24/09

<u>Case II</u>: When $L_h >> w_n$, which is the situation in integrated Si diodes, for example, the differential equation simplifies to: $\frac{d^2 p'(x)}{dx^2} = \frac{p'(x)}{L_h^2} \approx 0$

We see immediately that p'(x) is linear: p'(x) = Ax + B

Fitting the boundary conditions we find:

$$p'(x) \approx p'(x_n) \left[1 - \left(\frac{x - x_n}{w_n - x_n} \right) \right] \text{ for } x_n \le x \le w_n$$

This profile is a straight line, decreasing from $p'(x_n)$ at x_n to 0 at w_n .

In Case II the current is constant for $x_n \le x \le w_n$:

$$J_h(x) \approx -qD_h \frac{dp'(x)}{dx} = \frac{qD_h}{w_n - x_n} p'(x_n) \quad \text{for} \quad x_n \le x \le w_n$$

The constant current indicates that <u>no</u> carriers recombine before reaching the contact.

Clif Fonstad, 9/24/09

QNR Flow, cont.: Uniform doping, non-uniform LL injection **Sketching and comparing the limiting cases:** w_n>>L_h, w_n<<L_h

Case I - Long base: $w_n >> L_n$ (the situation in LEDs)

Case II - Short base: $w_n \ll L_n$ (the situation in most Si diodes and transistors)

Clif Fonstad, 9/24/09

Lecture 5 - Slide 23

QNR Flow, cont.: Uniform doping, non-uniform LL injection

The four other unknowns

- \Rightarrow Solving the steady state diffusion equation gives n'.
- \Rightarrow Knowing n'.... we can easily get p', J_e, J_h, and E_x:

First find
$$J_e$$
: $J_e(x) \approx qD_e \frac{dn'(t)}{dx}$

Then find J_h: $J_h(x) = J_{Tot} - J_e(x)$

Next find
$$\mathbf{E}_{\mathbf{x}}$$
: $E_x(x) \approx \frac{1}{q\mu_h p_o} \left[J_h(x) - \frac{D_h}{D_e} J_e(x) \right]$

Then find p':
$$p'(x) \approx n'(x) + \frac{\varepsilon}{q} \frac{dE_x(x)}{dx}$$

Finally, go back and check that all of the five conditions are met by the solution.

 ✓ Once we solve the diffusion equation to get the minority excess, n', we know everything.

Clif Fonstad, 9/24/09

Current flow: finding the relationship between i_{D} and v_{AB}

There are two pieces to the problem:

- Minority carrier flow in the QNRs is what limits the current.
- <u>Carrier equilibrium across the SCR</u> determines n'(-x_p) and p'(x_n), the boundary conditions of the QNR minority carrier flow problems.

The p-n Junction Diode: the game plan for getting $i_D(v_{AB})$ We have two QNR's and a flow problem in each:

If we knew n'(-x_p) and p'(x_n), we could solve the flow problems and we could get n'(x) for -w_p<x<-x_p, and p'(x) for x_n<x<w_n... Clif Fonstad, 9/24/09and knowing n'(x) for $-w_p < x < -x_p$, and p'(x) for $x_n < x < w_n$, we can find $J_e(x)$ for $-w_p < x < -x_p$, and $J_h(x)$ for $x_n < x < w_n$.

Having $J_e(x)$ for $-w_p < x < -x_p$, and $J_h(x)$ for $x_n < x < w_n$, we can get i_D because we will argue that $i_D(v_{AB}) = A[J_e(-x_p, v_{AB})+J_h(x_n, v_{AB})]...$...but first we need to know n'($-x_p, v_{AB}$) and p'(x_n, v_{AB}). Clif Fonstad, 9/24/09 We will do this in Lecture 6. Lecture 5 - Slide 27 **6.012 - Electronic Devices and Circuits**

Lecture 5 - p-n Junction Injection and Flow - Summary

• Biased p-n Diodes

Depletion regions change

(Lecture 4)

- Currents flow: two components
 - flow issues in quasi-neutral regions
 - boundary conditions on p' and n' at $-x_p$ and x_n

• Minority carrier flow in quasi-neutral regions

The importance of minority carrier diffusion

- minority carrier drift is negligible

Boundary conditions

Minority carrier profiles and currents in QNRs

- Short base situations
- Long base situations

• Carrier populations across the depletion region (Lecture 6)

Potential barriers and carrier populations Relating minority populations at $-x_p$ and x_n to v_{AB} Excess minority carriers at $-x_p$ and x_n 6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.