
       

     
 

      
       

    
   

    
    

   

     
 

      

6.012 - Electronic Devices and Circuits 
Lecture 5 - p-n Junction Injection and Flow - Outline
 

• Review 
Depletion approximation for an abrupt p-n junction 
Depletion charge storage and depletion capacitance (Rec. Fri.) 

qDP(vAB) = – AqNApxp = – A[2εq(φb-vAB){NApNDn/(NAp+NDn)}]1/2 

Cdp(VAB) ≡ ∂ qDP/∂ vAB|VAB = A[εq{NApNDn/(NAp+NDn)}/2(φb-VAB)]1/2 

• Biased p-n Diodes 
Depletion regions change (Lecture 4) 

Currents flow: two components 
– flow issues in quasi-neutral regions (Today) 
– boundary conditions on p' and n' at -xp and xn (Lecture 6) 

• Minority carrier flow in quasi-neutral regions
The importance of minority carrier diffusion 
Boundary conditions 
Minority carrier profiles and currents in QNRs 

– Short base situations 
– Long base situations 
– Intermediate situations 
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         The Depletion Approximation: an informed first estimate of ρ(x) 

Assume full depletion for -xp < x < xn, where xp and xn are 
two unknowns yet to be determined. This leads to: 

! 

"(x) =

0

#qNAp

qNDn

0

    for

    for

    for

    for

x < #xp

#xp < x < 0

0 < x < xn

xn < x

$ 

% 

& 
& 

' 

& 
& 

ρ(x)

Integrating the charge once gives the electric field
 

! 

E(x) =

0                   for            x < "xp

"
qNAp

#Si

x + xp( )         for       " xp < x < 0

qNDn

#Si

x " xn( )          for          0 < x < xn

0                 for             xn < x

$ 

% 

& 
& 
& 

' 

& 
& 
& 

Ε(x) 

n 

E(0) = -qNApxp/εSi 
= -qNDnxn/εSi 
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The Depletion Approximation, cont.:
 

Integrating again gives the electrostatic potential: 

φ(x) 

φn 

-xp 
x 

xn 

φp 

equation relating our unknowns, xn and xp: -xp 

Ε(x)

x 

! 

NAp xp = NDn xn

xn 

1 
E(0) = -qNApxp/εSi

 = -qNDnxn/εSi 

Requiring that the potential be continuous at x = 0 gives
us our second relationship between xn and xp: 

! 

"(x) =

"p                             for       x < #xp

"p +
qNAp

2$Si

x + xp( )
2

          for     - xp < x < 0

"n #
qNDn

2$Si

x # xn( )
2
          for      0 < x < xn

"n                            for        xn < x

% 

& 

' 
' 
' 

( 

' 
' 
' 

Insisting E(x) is continuous at x = 0 yields our first


φ(0) = φp + qNApxp
2/2εSi 

= φn − qNDnxn
2/2εSi 

! 

"p +
qNAp

2#Si

x p

2
= "n $

qNDn

2#Si

xn

2 2 
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Comparing the depletion approximation 
with a full solution: 

Example:  An unbiased abrupt p-n junction
 
with NAp= 1017 cm-3, NDn = 5 x 1016 cm-3
 

Charge 

E-field 

Potential 

nie±qφ(x)/kT po(x), no(x) 
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Depletion approximation: Applied bias 
Forward bias, vAB > 0: φ 

vAB 
-wp 

wn-xp 0 xn 

(φb-vAB) x 

No drop
in wire 

No drop
at contact No drop

in QNR 

No drop
in QNR 

No drop
at contact 

No drop
in wire 

In a well built diode, all the applied
voltage appears as a change in the
the voltage step crossing the SCL 

-wp x 
wn-xp 0 xn 

vAB 

φ 

(φb-vAB) 

Reverse bias, vAB < 0: 

Note:  With applied bias we are no longer in thermal equilibrium so 
it is no longer true that n(x) = ni eqφ(x)/kT and p(x) = ni e-qφ(x)/kT. 
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The Depletion Approximation: Applied bias, cont.
 

Adding vAB to our earlier sketches: assume reverse bias, vAB < 0
 

ρ(x)

 xn 

-xp 

-qNAp 

qNDn 

w 
xnxp 

Ε(x)

x 

x 
! 

w =
2"Si #b $ vAB( )

q

NAp + NDn( )
NApNDn

! 

xp =
NDnw

NAp + NDn( )
, xn =

NApw

NAp + NDn( )

xn 

-xp 

|Epk| 

! 

"# = #b $ vAB

  and     #b =
kT

q
ln

NDnNAp

ni

2

! 

E pk =
2q "b # vAB( )

$Si

NApNDn

NAp + NDn( )
φ(x)

 xn 

-xp 

(φb -vAB) 

x 
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     The Depletion Approximation: comparison cont. 

Example:  Same sample, reverse
 
biased -2.4 V
 

Charge 

E-field 

Potential 

nie±qφ(x)/kT p (x) 
n (x) 
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     The Depletion Approximation: comparison cont. 

Example:  Same sample, forward
 
biased 0.6 V
 

Charge 

E-field 

Potential 

nie±qφ(x)/kT p (x) 
n (x) 
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The value of the depletion approximation 

The plots look good, but equally important is that 
1.	 It gives an excellent model for making hand calculations

and gives us good values for quantities we care about: 
•	 Depletion region width
•	 Peak electric field 
•	 Potential step 

2.	 It gives us the proper dependences of these quantities on
the doping levels (relative and absolute) and the bias voltage. 

Apply bias; what happens? 
Two things happen 
1. The depletion width changes

• (φb - vAB) replaces φb in the Depletion Approximation Eqs. 
2. Currents flow 

• This is the main topic of today’s lecture 
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 xn 

-xp 

qA 

  qB 
( = -q  A) 

-qNAp 

 qNDn 

Depletion capacitance: Comparing depletion charge stores with a
 
parallel plate capacitor ρ(x) 

ρ(x) 

d/2 

-d/2 

qA 

qB( = -qA) 

xx 

Depletion region charge storeParallel plate capacitor 

! 

qA ,PP = A
"

d
vAB

Cpp (VAB) #
$qA ,PP

$vAB vAB =VAB

=
A"

d

Many similarities;
 
important differences.
 

! 

qA ,DP (vAB ) = "AqNAp xp vAB( )

= "A 2q#Si $b " vAB[ ]
NApNDn

NAp + NDn[ ]

Cdp (VAB) %
&qA ,DP

&vAB vAB =VAB

= A
q#Si

2 $b "VAB[ ]

NApNDn

NAp + NDn[ ]
=

A #Si

w(VAB )
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Bias applied, cont.: With vAB ≠ 0, it is not true that n(x) = ni eqφ(x)/kT 

and p(x) = ni e-qφ(x)/kT because we are no longer in TE. However, 
outside of the depletion region things are in quasi-equilibrium, and 
we can define local electrostatic potentials for which the equilibrium 
relationships hold for the majority carriers, assuming LLI. 

Forward bias, vAB > 0: 

In this region n(x) ≈ ni eqφQNRn/kT 

Reverse bias, vAB < 0: 

-wp x 
wn-xp 0 xn 

vAB 

φQNRn 

(φb-vAB) 

φQNRp 

vAB 

vAB 

vAB 

x 

-wp 

wn0 xn 

vAB 

φQNRn 

(φb-vAB) 

φQNRp 

vAB 

vAB 

-xp vAB 

In this region p(x) ≈ ni e-qφQNRp/kT 
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Current Flow qφ 

Unbiased 
junction 

Population in
equilibrium with 

barrier 

qφ 

Forward bias
 
on junction
 

Barrier lowered so
 
carriers to left can
 

cross over it.
 

qφ 

Reverse bias
 
on junction
 

Barrier raised so the
 
few carriers on top

spill back down it.
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         Current flow: finding the relationship between iD and vAB 

There are two pieces to the problem: 
•	 Minority carrier flow in the QNRs is what limits the current. 
•	 Carrier equilibrium across the SCR determines n'(-xp) and p'(xn), 

the boundary conditions of the QNR minority carrier flow problems. 

Ohmic	 Uniform p-type Uniform n-type 

-wp	 -xp 0 xn wn 
x 

p n 

Ohmic 
contact contact 

A B 
iD 

+ -
vAB 

Quasineutral Space charge Quasineutral
region I region region II 

Minority carrier flow 
here determines the 

electron current 
- Today's Lecture -

The values of n' at 
-xp and p' at xn are 
established here. 

Minority carrier flow 
here determines the 

hole current 
- Today's Lecture -
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Solving the five equations: special cases we can handle 
, po): 

Lecture 1
 

1. Uniform doping, thermal equilibrium (nopo product, no

! 

"

"x
= 0,

"

"t
= 0, gL (x,t) = 0, Je = Jh = 0

2. Uniform doping and E-field (drift conduction, Ohms law):
 
Lecture 1 

! 

"

"x
= 0,

"

"t
= 0, gL (x,t) = 0, Ex constant

3. Uniform doping and uniform low level optical injection (

! 

"

"x
= 0, gL (t), n' << po

τmin): 

Lecture 2
 

3'. Uniform doping, optical injection, 

! 

"

"x
= 0, Ex constant, gL (t)

and E-field (photoconductivity): 

Lecture 2
 

4. Non-uniform doping in thermal equilibrium (junctions, interfaces)
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Lectures 3,4 

5. Uniform doping, non-uniform LL injection (QNR diffusion) 

Lecture 5 

! 

"Nd

"x
=
"Na

"x
= 0, n'# p', n'<< po, Je # qDe

"n'

"x
,

"

"t
# 0

! 

"

"t
= 0, gL (x,t) = 0, Je = Jh = 0

TODAY 



       

        
       

       

     

      

          

  

 

  

  

 

          

QNR Flow: Uniform doping, non-uniform LL injection 

What we have: 
Five things we care about (i.e. want to know): 

Hole and electron concentrations: 

Hole and electron currents: 

Electric field: 

! 

p(x, t)    and    n(x, t)

Jhx (x, t)    and    Jex (x,t)

Ex (x, t)

And, five equations relating them:
 

Hole continuity:
 

Electron continuity:
 

Hole current density: 

Electron current density:
 

Charge conservation:
 

! 

"p(x, t)

"t
+

1

q

"Jh (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

"n(x, t)

"t
#

1

q

"Je (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

Jh (x, t) = qµh p(x, t)E(x,t) # qDh

"p(x,t)

"x

Je (x, t) = qµen(x, t)E(x,t) + qDe

"n(x,t)

"x

%(x, t) =
" &(x)Ex (x, t)[ ]

"x
$ q p(x,t) # n(x,t) + Nd (x) # Na (x)[ ]

We can get approximate analytical solutions if 5 conditions are met! 
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       QNR Flow, cont.: Uniform doping, non-uniform LL injection 

Five unknowns, five equations, five flow problem conditions: 

1. Uniform doping 

! 

dno

dx
=

dpo

dx
= 0 "

#n

#x
=
#n'

#x
,
#p

#x
=
#p'

#x

! 

po " no + Nd " Na = 0 # $ = q p " n + Nd " Na( ) = q p'"n'( )

2. Low level injection 
(in p-type, for example) 

3. Quasineutrality holds
 

! 

n'" p',
#n'

#x
"
#p'

#x

! 

n'<< po " np # ni

2( )r $ n' por =
n'

% e

4. Minority carrier drift is negligible 
(continuing to assume p-type) 

! 

Je (x, t) " qDe

#n'(x, t)

#x

Note: It is also always true that
 

! 

"n

"t
=
"n'

"t
,
"p

"t
=
"p'

"t
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QNR Flow, cont.: Uniform doping, non-uniform LL injection 

With these first four conditions our five equations become:
(assuming for purposes of discussion that we have a p-type sample) 

In preparation for continuing to our fifth condition, we note
that combining Equations 1 and 3 yields one equation in 
n'(x,t): ! 

1,2 :    
"p'(x, t)

"t
+

1

q

"Jh (x,t)

"x
=
"n'(x,t)

"t
#

1

q

"Je (x, t)

"x
= gL (x, t) #

n'(x, t)

$ e

 3 :      Je (x, t) % +qDe

"n'(x,t)

"x

 4 :     Jh (x, t) = qµh p(x, t)E(x,t) + qDh

"p'(x,t)

"x

 5 :     
"E(x, t)

"x
=

q

&
p'(x,t) # n'(x,t)[ ]

! 

"n'(x, t)

"t
#De

" 2
n'(x, t)

"x
2

= gL (x, t) #
n'(x, t)

$ e

 The time dependent diffusion equation 
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QNR Flow, cont.: Uniform doping, non-uniform LL injection 

The time dependent diffusion equation, which is repeated
below, is in general still very difficult to solve 

! 

"n'(x, t)

"t
#De

" 2
n'(x, t)

"x
2

= gL (x, t) #
n'(x, t)

$ e

but things get much easier if we impose a fifth constraint: 

5. Quasi-static excitation
 

! 

gL (x, t) such that all  
"

"t
# 0

With this constraint the above equation becomes a second
 

! 

"De

d
2
n'(x)

dx
2

= gL (x) "
n'(x)

# e

order linear differential equation: 

which in turn becomes, after rearranging the terms :
 

 The steady state diffusion equation 

! 

d
2
n'(x)

dx
2

"
n'(x)

De# e

= "
1

De

gL (x)
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QNR Flow, cont.: Solving the steady state diffusion equation
 

The steady state diffusion equation in p-type material is: 

! 

d
2
n'(x)

dx
2

"
n'(x)

Le

2
= "

1

De

gL (x)

and for n-type material it is:
 

! 

d
2
p'(x)

dx
2

"
p'(x)

Lh

2
= "

1

Dh

gL (x)

In writing these expressions we have introduced Le and Lh, 
the minority carrier diffusion lengths for holes and 
electrons, as: 

! 

Le " De# e

! 

Lh " Dh# h

We'll see that the minority carrier diffusion length tells us how 
far the average minority carrier diffuses before it recombines. 

In a basic p-n diode, we have gL = 0 which means we only need 
the homogenous solutions, i.e. expressions that satisfy: 

! 

d
2
p'(x)

dx
2

"
p'(x)

Lh

2
= 0

! 

d
2
n'(x)

dx
2

"
n'(x)

Le

2
= 0

n-side: p-side: 
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where A and B are constants that satisfy the boundary
conditions.

         
         

     

QNR Flow, cont.: Solving the steady state diffusion equation
 

find p'(x) for xn 

For convenience, we focus on the n-side to start with and 
≤ x ≤ wn. p'(x) satisfies 

! 

d
2
p'(x)

dx
2

=
p'(x)

Lh

2

subject to the boundary conditions:
 

! 

p'(wn ) = 0   and   p'(xn ) = something we'll find next time

The general solution to this static diffusion equation is:
 

! 

p'(x) = Ae
"x Lh + Be

+x Lh

where A and B are constants that satisfy the boundary
conditions. Solving for them and putting them into this
equation yields the final general result: 

! 

p'(x) =
p'(xn )e

wn"xn( ) Lh

e
wn"xn( ) Lh " e

" wn"xn( ) Lh

e
" x"xn( ) Lh "

p'(xn )e
" wn"xn( ) Lh

e
wn"xn( ) Lh " e

" wn"xn( ) Lh

e
+ x"xn( ) Lh

                         for    xn # x # wn
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QNR Flow, cont.: Solving the steady state diffusion equation 

We seldom care about this general result. Instead, we find 
that most diodes fall into one of two cases: 

Case I - Long-base diode: wn >> Lh 

Case II - Short-base diode: Lh >> wn 

Case I: When wn >> Lh, which is the situation in an LED, for 
example, the solution is 

! 

p'(x) " p'(xn )e
# x#xn( ) Lh    for    xn $ x $ wn

This profile decays from p'(xn) to 0 exponentially as e-x//Lh. 

The corresponding hole current for xn ≤ x ≤ wn in Case I is 

! 

Jh (x) " #qDh

dp'(x)

dx
=

qDh

Lh

p'(xn )e
# x#xn( ) Lh      for    xn $ x $ wn

The current decays to zero also, indicating that all of the excess 
minority carriers have recombined before getting to the contact. 
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QNR Flow, cont.: Solving the steady state diffusion equation
 

Case II: When Lh >> wn, which is the situation in integrated 
Si diodes, for example, the differential equation simplifies 

! 

d
2
p'(x)

dx
2

=
p'(x)

Lh

2
" 0

to:
 

We see immediately that p'(x) is linear:
 

Fitting the boundary conditions we find:
 

! 

p'(x) = A x + B

! 

p'(x) " p'(xn ) 1#
x # xn

wn # xn

$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/    for    xn 0 x 0 wn

This profile is a straight line, decreasing from p'(xn) at xn to 0 at wn. 

In Case II the current is constant for xn ≤ x ≤ wn: 

! 

Jh (x) " #qDh

dp'(x)

dx
=

qDh

wn # xn

p'(xn )     for    xn $ x $ wn

The constant current indicates that no carriers recombine 
before reaching the contact. 
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QNR Flow, cont.: Uniform doping, non-uniform LL injection 

Sketching and comparing the limiting cases: wn>>Lh, wn<<Lh 

Case I - Long base: wn >> Ln (the situation in LEDs) 

p' (x) [cm-3] Jh(x) [A/cm2] 

x [cm-3]wn 

qDhp'n(xn) Lh 
e-x/Lh 

0 xn xn+Lhwn0 xn xn+Lh 

n

x [cm-3] 

p'n(xn) 
e-x/Lh 

Case II - Short base: w << L (the situation in most Si diodes and transistors) n n 

p' (x) [cm-3] Jh(x) [A/cm2] 

p'n(xn) 

n

qDhp'n( n)x [wn-xn] 

0 x w x [cm-3] 0 x w x [cm-3]
n n n n 
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QNR Flow, cont.: Uniform doping, non-uniform LL injection 

The four other unknowns 
⇒ Solving the steady state diffusion equation gives n’. 
⇒ Knowing n'..... we can easily get p’, Je, Jh, and Ex: 

First find Je: 

Then find Jh: 

Next find Ex: 

Then find p’:
 

! 

Ex (x) "
1

qµh po

Jh (x) #
Dh

De

Je (x)
$ 

% 
& 

' 

( 
) 

! 

p'(x) " n'(x) +
#

q

dEx (x)

dx

! 

Je (x) " qDe

dn'(t)

dx

! 

Jh (x) = JTot " Je (x)

Finally, go back and check that all of the five conditions are 
met by the solution. 

 Once we solve the diffusion equation to get 
the minority excess, n', we know everything.Clif Fonstad, 9/24/09 Lecture 5 - Slide 24 



       

      
          

        
         

    

   

     

         Current flow: finding the relationship between iD and vAB 

There are two pieces to the problem: 
•	 Minority carrier flow in the QNRs is what limits the current. 
•	 Carrier equilibrium across the SCR determines n'(-xp) and p'(xn), 

the boundary conditions of the QNR minority carrier flow problems. 

Ohmic	 Uniform p-type Uniform n-type 

-wp	 -xp 0 xn wn 
x 

p n 

Ohmic 
contact contact 

A B 
iD 

+ -
vAB 

Quasineutral Space charge Quasineutral
region I region region II 

Minority carrier flow 
here determines the 

electron current 
The values of n' at 
-xp and p' at xn are 
established here. 

Minority carrier flow 
here determines the 

hole current 
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The p-n Junction Diode: the game plan for getting iD(vAB) 
We have two QNR's and a flow problem in each: 

Quasineutral QuasineutralOhmic 

n 

Ohmic 
contact 

B 
-

region II 

p 

contact 

A 
iD 

+ 
vAB 

region I 

xx 
-wp -xp 0 0 xn wn 

p'(xn) = ? 
p'(wn) = 0 

n'(-xp) = ? n'p p'n 

n'(-wp) = 0 

x
 
-wp -xp 0 0 xn wn
 

If we knew n'(-xp) and p'(xn), we could solve the flow problems 
and we could get n'(x) for -wp<x<-xp, and p'(x) for xn<x<wn … 
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….and knowing n'(x) for -wp<x<-xp, and p'(x) for xn<x<wn, 
we can find Je(x) for -wp<x<-xp, and Jh(x) for xn<x<wn. 

' ' 

Having Je(x) for -wp<x<-xp, and Jh(x) for xn<x<wn, we can get iD 
because we will argue that iD(vAB) = A[Je(-xp,vAB)+Jh(xn,vAB)]… 

…but first we need to know n'(-xp,vAB) and p'(xn,vAB). 
Clif Fonstad, 9/24/09 We will do this in Lecture 6. Lecture 5 - Slide 27 

-wp -xp 0 wn0 xn 

n p p n 

n'(-wp) = 0 

n'(-xp,vAB) = ? 

p'(wn) = 0 
p'(xn,vAB) = ? 

xx 

wn0 xn-wp -xp 0 

Je JhJe(-wp<x<-xp)=qDe(dn'/dx) 
Jh(xn<x<wn)=-qDh(dp'/dx) 

xx 



       

     
 

    
    

   

     
 

 
      

  
    
        

      

6.012 - Electronic Devices and Circuits 
Lecture 5 - p-n Junction Injection and Flow - Summary
 

• Biased p-n Diodes 
Depletion regions change (Lecture 4) 

Currents flow: two components 
– flow issues in quasi-neutral regions 
– boundary conditions on p' and n' at -xp and xn 

• Minority carrier flow in quasi-neutral regions
The importance of minority carrier diffusion 

– minority carrier drift is negligible 
Boundary conditions

Minority carrier profiles and currents in QNRs
 

– Short base situations 
– Long base situations 

• Carrier populations across the depletion region (Lecture 6) 

Potential barriers and carrier populations 
Relating minority populations at -xp and xn to vAB 
Excess minority carriers at -xp and xn 
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