MIT OpenCourseWare
http://ocw.mit.edu
6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:
Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

Suggested Reading Assignment: Staelin, Sections 6.1-6.4, 10.1, 10.2, 10.4
Final Exam: Wednesday, Dec. 21, 2005, 1:30-4:30pm.

Problem 11.1

A popular 1-MHz AM radio station in the middle of Kansas has a single transmitting antenna on a flat prairie that radiates 100 kW isotropically (equally in all directions) over the upper 2π steradians (i.e., this station has no underground audience.) The matched input impedance (the radiation resistance R_{r}) of this antenna is ~ 70 ohms, and it is driven by $V_{0} \sin \omega t$ volts at maximum power.
a) What is V_{0} [Volts]?
b) What is the radiated intensity $I\left[\mathrm{~W} / \mathrm{m}^{2}\right] 50$ kilometers from this antenna?
c) What is the maximum power P_{r} that can be received from this station by an antenna 50 km away with an effective area $A=10 \mathrm{~m}^{2}$?

Problem 11.2

A short dipole antenna, 10 cm in length and aligned along the \hat{z} axis, is driven uniformly along its length with a sinusoidal current of peak value 1 amp .
a) What is the electric field $\bar{E}(r, \theta, t)$ in the far field?
b) At what frequency would this antenna radiate 1 watt of power?
c) If a receiver with effective area $A=0.1 \mathrm{~m}^{2}$ needed 10^{-20} watts for successful reception, how far away could it be and still receive signals from the 1 watt dipole? In what direction?

Problem 11.3

An antenna consists of two short dipoles, oriented along the z-axis and separated along the y-axis by a distance a. They are driven in phase, each with a current I_{0} and an effective length $d_{\text {eff }},\left(d_{\text {eff }} \square \lambda\right)$, at an angular frequency of ω. (Assume that each antenna radiates as it would in the absence of the other.)

a) What is the intensity of the radiation in the far field as a function of angle ϕ in the $x-y$ plane?
b) For $a=2 \lambda$, at what angles $\phi_{\max }$ and $\phi_{\min }$ is the intensity a relative maximum or zero?

Problem 11.4

A "turnstile" antenna consists of two short Hertzian dipoles driven at an angular frequency ω and oriented at right angles to each other as shown in the figure below. One dipole, oriented along the x-axis is driven with a current $\hat{\bar{I}}_{1}=\hat{I}_{0} \hat{x}$ and the other, oriented along the y-axis is driven with $\hat{\bar{I}}_{2}=j \hat{I}_{0} \hat{y}$. Both have the same effective length $d_{\text {eff }}$.

a) Find the complex amplitude of the total electric field on the $+z$ axis in the far field. (Express your answer in Cartesian coordinates with unit vectors \hat{x}, \hat{y}, and \hat{z}.)
b) Why is the result of part (a) called left-handed circular polarization (LHCP) for $+z$ directed waves along the $+z$ axis?
c) What is the complex amplitude of the magnetic field on the $+z$ axis in the far field?
d) What is the intensity of the radiation on the z axis in the far field?

Hint: $\langle\bar{S}\rangle=\frac{1}{2} \operatorname{Re}\left[\hat{\bar{E}} \times \hat{\bar{H}}^{*}\right]$

Problem 11.5

Sketch the far field radiation patterns in the $x-y$ plane for each of the following short dipole antenna arrays. The identical dipoles are directed in either the $+z \odot$ or $-z \otimes$ directions, as indicated, and the currents have equal amplitudes of ± 1. In part (b) one current has a phase of $\frac{\pi}{2}$ so that its complex amplitude is j. In each case find the angles ϕ corresponding to nulls $\left(\phi_{n}\right)$ and peaks $\left(\phi_{p}\right)$. If the peaks are unequal, also evaluate their relative values.

Problem 11.6

Using the format of Problem 11.5 design two-dipole arrays that could produce the far field antenna gain patterns illustrated below. The two dipoles have the same current amplitude but may differ in phase. Find the spacing a between the two dipoles and their relative phase that results in the radiation patterns shown in parts (a) - (c).

6.013 Final Exam Formula Sheet

December 21, 2005

Cartesian Coordinates (x,y,z):

$$
\begin{aligned}
\nabla \Psi & =\hat{x} \frac{\partial \Psi}{\partial \mathrm{x}}+\hat{y} \frac{\partial \Psi}{\partial \mathrm{y}}+\hat{z} \frac{\partial \Psi}{\partial \mathrm{z}} \\
\nabla \cdot \overline{\mathrm{~A}} & =\frac{\partial \mathrm{A}_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{A}_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{z}} \\
\nabla \times \overline{\mathrm{A}} & =\hat{x}\left(\frac{\partial \mathrm{~A}_{\mathrm{z}}}{\partial \mathrm{y}}-\frac{\partial \mathrm{A}_{\mathrm{y}}}{\partial \mathrm{z}}\right)+\hat{y}\left(\frac{\partial \mathrm{~A}_{\mathrm{x}}}{\partial \mathrm{z}}-\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{x}}\right)+\hat{z}\left(\frac{\partial \mathrm{~A}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{A}_{\mathrm{x}}}{\partial \mathrm{y}}\right) \\
\nabla^{2} \Psi & =\frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}
\end{aligned}
$$

Cylindrical coordinates ($\mathbf{r}, \phi, \mathrm{z}$):

$$
\begin{aligned}
& \nabla \Psi=\hat{\mathrm{r}} \frac{\partial \Psi}{\partial \mathrm{r}}+\hat{\phi} \frac{1}{\mathrm{r}} \frac{\partial \Psi}{\partial \phi}+\hat{\mathrm{z}} \frac{\partial \Psi}{\partial \mathrm{z}} \\
& \nabla \cdot \overline{\mathrm{~A}}=\frac{1}{\mathrm{r}} \frac{\partial\left(\mathrm{rA}_{\mathrm{r}}\right)}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~A}_{\phi}}{\partial \phi}+\frac{\partial \mathrm{A}_{\mathrm{Z}}}{\partial \mathrm{z}} \\
& \nabla \times \overline{\mathrm{A}}=\hat{r}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~A}_{\mathrm{z}}}{\partial \phi}-\frac{\partial \mathrm{A}_{\phi}}{\partial \mathrm{z}}\right)+\hat{\phi}\left(\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \mathrm{z}}-\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{r}}\right)+\hat{z} \frac{1}{\mathrm{r}}\left(\frac{\partial\left(\mathrm{rA}_{\phi}\right)}{\partial \mathrm{r}}-\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \phi}\right)=\frac{1}{\mathrm{r}} \operatorname{det}\left|\begin{array}{ccc}
\hat{r} & r \hat{\phi} & \hat{z} \\
\partial / \partial \mathrm{r} & \partial / \partial \phi & \partial / \partial \mathrm{z} \\
\mathrm{~A}_{\mathrm{r}} & \mathrm{rA}_{\phi} & \mathrm{A}_{\mathrm{z}}
\end{array}\right| \\
& \nabla^{2} \Psi=\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \frac{\partial \Psi}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \Psi}{\partial \phi^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}
\end{aligned}
$$

Spherical coordinates (r, θ, ϕ):

$$
\begin{aligned}
\nabla \Psi & =\hat{r} \frac{\partial \Psi}{\partial \mathrm{r}}+\hat{\theta} \frac{1}{\mathrm{r}} \frac{\partial \Psi}{\partial \theta}+\hat{\phi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial \Psi}{\partial \phi} \\
\nabla \cdot \overline{\mathrm{~A}} & =\frac{1}{\mathrm{r}^{2}} \frac{\partial\left(\mathrm{r}^{2} \mathrm{~A}_{\mathrm{r}}\right)}{\partial \mathrm{r}}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial\left(\sin \theta \mathrm{~A}_{\theta}\right)}{\partial \theta}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{~A}_{\phi}}{\partial \phi} \\
\nabla \times \overline{\mathrm{A}} & =\hat{r} \frac{1}{\mathrm{r} \sin \theta}\left(\frac{\partial\left(\sin \theta \mathrm{~A}_{\phi}\right)}{\partial \theta}-\frac{\partial \mathrm{A}_{\theta}}{\partial \phi}\right)+\hat{\theta}\left(\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{~A}_{\mathrm{r}}}{\partial \phi}-\frac{1}{\mathrm{r}} \frac{\partial\left(\mathrm{rA}_{\phi}\right)}{\partial \mathrm{r}}\right)+\hat{\phi} \frac{1}{\mathrm{r}}\left(\frac{\partial\left(\mathrm{rA}_{\theta}\right)}{\partial \mathrm{r}}-\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \theta}\right) \\
& =\frac{1}{\mathrm{r}^{2} \sin \theta} \operatorname{det}\left|\begin{array}{lll}
\hat{r} & \mathrm{r} \hat{\theta} & \mathrm{r} \sin \theta \hat{\phi} \\
\partial / \partial \mathrm{r} & \partial / \partial \theta & \partial / \partial \phi \\
\mathrm{A}_{\mathrm{r}} & \mathrm{rA}_{\theta} & \mathrm{r} \sin \theta \mathrm{~A}_{\phi}
\end{array}\right| \\
\nabla^{2} \Psi & =\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \frac{\partial \Psi}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{\mathrm{r}^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}
\end{aligned}
$$

Gauss' Divergence Theorem:	Vector Algebra:
$\int_{\mathrm{V}} \nabla \cdot \overline{\mathrm{G}} \mathrm{dv}=\oint_{\mathrm{A}} \overline{\mathrm{G}} \bullet \hat{n}$ da	$\nabla=\hat{\mathrm{x}} \partial / \partial \mathrm{x}+\hat{\mathrm{y}} \partial / \partial \mathrm{y}+\hat{\mathrm{z}} \partial / \partial \mathrm{z}$ $\overline{\mathrm{A}} \bullet \overline{\mathrm{B}}=\mathrm{A}_{\mathrm{X}} \mathrm{B}_{\mathrm{X}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{Z}} \mathrm{B}_{\mathrm{Z}}$
Stokes' Theorem:	$\nabla \bullet(\nabla \times \overline{\mathrm{A}})=0$
$\int_{\mathrm{A}}(\nabla \times \overline{\mathrm{G}}) \bullet \hat{n} \mathrm{da}=\oint_{\mathrm{C}} \overline{\mathrm{G}} \cdot \mathrm{d} \bar{\ell}$	$\nabla \times(\nabla \times \overline{\mathrm{A}})=\nabla(\nabla \bullet \overline{\mathrm{A}})-\nabla^{2} \overline{\mathrm{~A}}$

Basic Equations for Electromagnetics and Applications

Fundamentals	
$\overline{\mathrm{f}}=\mathrm{q}\left(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \mu_{0} \overline{\mathrm{H}}\right)[\mathrm{N}]$ (Force on point charge)	$\overline{\mathrm{E}}_{1 / /}-\overline{\mathrm{E}}_{2 / /}=0$
$\nabla \times \overline{\mathrm{E}}=-\partial \overline{\mathrm{B}} / \partial \mathrm{t}$	$\overline{\mathrm{H}}_{1 / /}-\overline{\mathrm{H}}_{2 / /}=\overline{\mathrm{J}}_{\mathrm{s}} \times \hat{\mathrm{n}}$
$\oint_{\mathrm{c}} \overline{\mathrm{E}} \bullet \mathrm{d} \overline{\mathrm{s}}=-\frac{\mathrm{d}}{\mathrm{dtt}} \int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \mathrm{d}$	$\mathrm{B}_{1 \perp}-\mathrm{B}_{2 \perp}=0$
$\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\partial \overline{\mathrm{D}} / \partial \mathrm{t}$	$\hat{n} \bullet\left(D_{1 \perp}-D_{2 \perp}\right)=\rho_{\mathrm{s}}$
$\oint_{\mathrm{c}} \overline{\mathrm{H}} \bullet d \overline{\mathrm{~s}}=\int_{\mathrm{A}} \overline{\mathrm{J}} \bullet d \overline{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{A}} \overline{\mathrm{D}} \bullet$ d $\overline{\mathrm{a}}$	$\longrightarrow 0=$ if $\sigma=\infty$
$\nabla \bullet \overline{\mathrm{D}}=\rho \rightarrow \int_{\mathrm{A}} \overline{\mathrm{D}} \bullet \mathrm{d} \overline{\mathrm{a}}=\int_{\mathrm{V}} \rho d v$	Electromagnetic Quasistatics
$\nabla \bullet \overline{\mathrm{B}}=0 \rightarrow \int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{da}=0$	$\overline{\mathrm{E}}=-\nabla \Phi(\mathrm{r}), \Phi(\mathrm{r})=\int_{\mathrm{V}^{\prime}}\left(\rho(\overline{\mathrm{r}}) / 4 \pi \varepsilon\left\|\mathrm{r}^{\prime}-\overline{\mathrm{r}}\right\|\right) \mathrm{dv}{ }^{\prime}$
$\nabla \bullet \overline{\mathrm{J}}=-\partial \rho / \partial \mathrm{t}$	$\nabla^{2} \Phi=\frac{-\rho_{\mathrm{f}}}{\varepsilon}$
$\overline{\mathrm{E}}=$ electric field $\left(\mathrm{Vm}^{-1}\right)$	$\mathrm{C}=\mathrm{Q} / \mathrm{V}=\mathrm{A} \varepsilon / \mathrm{d}[\mathrm{F}]$
$\overline{\mathrm{H}}=$ magnetic field $\left(\mathrm{Am}^{-1}\right)$	$\mathrm{L}=\Lambda / \mathrm{I}$
$\overline{\mathrm{D}}=$ electric displacement $\left(\mathrm{Cm}^{-2}\right)$	$\mathrm{i}(\mathrm{t})=\mathrm{Cdv}(\mathrm{t} / \mathrm{dt}$
$\overline{\mathrm{B}}=$ magnetic flux density (T)	$\mathrm{v}(\mathrm{t})=\mathrm{L}$ di(t)/dt $=\mathrm{d} \Lambda / \mathrm{dt}$
Tesla $(\mathrm{T})=$ Weber $\mathrm{m}^{-2}=10,000$ gauss	$\mathrm{w}_{\mathrm{e}}=\mathrm{Cv}^{2}(\mathrm{t}) / 2 ; \mathrm{w}_{\mathrm{m}}=\mathrm{Li}^{2}(\mathrm{t}) / 2$
$\rho=$ charge density $\left(\mathrm{Cm}^{-3}\right)$	$\mathrm{L}_{\text {solenoid }}=\mathrm{N}^{2} \mu \mathrm{~A} / \mathrm{W}$
$\overline{\mathrm{J}}=$ current density $\left(\mathrm{Am}^{-2}\right)$	$\tau=\mathrm{RC}, \tau=\mathrm{L} / \mathrm{R}$
$\sigma=$ conductivity (Siemens m^{-1})	$\Lambda=\int_{\mathrm{A}} \overline{\mathrm{B}} \bullet$ da (per turn)
$\overline{\mathrm{J}}_{\mathrm{s}}=$ surface current density $\left(\mathrm{Am}^{-1}\right)$	KCL: $\sum_{i} \mathrm{I}_{\mathrm{i}}(\mathrm{t})=0$ at node
$\rho_{\mathrm{s}}=$ surface charge density $\left(\mathrm{Cm}^{-2}\right)$	KVL: $\sum_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}(\mathrm{t})=0$ around loop
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$	$Q=\omega_{0} w_{T} / P_{\text {diss }}=\omega_{0} / \Delta \omega$
$\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$	$\omega_{0}=(L C)^{-0.5}$
$\mathrm{c}=\left(\varepsilon_{0} \mu_{\mathrm{o}}\right)^{-0.5} \cong 3 \times 10^{8} \mathrm{~ms}^{-1}$	$\left\langle V^{2}(t)\right\rangle / R=k T$
$\mathrm{e}=-1.60 \times 10^{-19} \mathrm{C}$	
$\eta_{\mathrm{o}} \cong 377 \mathrm{ohms}=\left(\mu_{0} / \varepsilon_{0}\right)^{0.5}$	Electromagnetic Waves
$\left(\nabla^{2}-\mu \varepsilon \partial^{2} / \partial \mathrm{t}^{2}\right) \overline{\mathrm{E}}=0$ [Wave Eqn.]	$\left(\nabla^{2}-\mu \varepsilon \partial^{2} / \partial t^{2}\right) \overline{\mathrm{E}}=0$ [Wave Eqn.]
$\mathrm{E}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{+}(\mathrm{z}-\mathrm{ct})+\mathrm{E}_{(}(\mathrm{z}+\mathrm{ct})=\mathrm{R}_{\mathrm{e}}\left\{\mathrm{E}_{\mathrm{y}}(\mathrm{z}) \mathrm{e}^{\mathrm{j} \omega t}\right\}$	
$H_{x}(z, t)=\eta_{0}{ }^{-1}\left[E_{+}(z-c t)-E_{\text {- }}(\mathrm{z}+\mathrm{ct})\right][$ or $(\omega t-k z)$ or (t-z/c) $]$	$\mathrm{k}=\omega(\mu \varepsilon)^{0.5}=\omega / \mathrm{c}=2 \pi / \lambda$
$\int_{A}(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \bullet \mathrm{da}+(\mathrm{d} / \mathrm{dtt}) \int_{V}\left(\varepsilon\|\overline{\mathrm{E}}\|^{2} / 2+\mu\|\overline{\mathrm{H}}\|^{2} / 2\right) \mathrm{dv}$	$\mathrm{k}_{\mathrm{x}}{ }^{2}+\mathrm{k}_{\mathrm{y}}{ }^{2}+\mathrm{k}_{\mathrm{z}}{ }^{2}=\mathrm{k}_{\mathrm{o}}{ }^{2}=\omega^{2} \mu \varepsilon$
$=-\int_{\mathrm{V}} \overline{\mathrm{E}} \bullet \overline{\mathrm{~J}} \mathrm{dv} \text { (Poynting Theorem) }$	$\mathrm{v}_{\mathrm{p}}=\omega / \mathrm{k}, \mathrm{v}_{\mathrm{g}}=(\partial \mathrm{k} / \partial \omega)^{-1}$
	$\theta_{r}=\theta_{i}$
Media and Boundaries	$\sin \theta_{t} / \sin \theta_{i}=k_{i} / k_{t}=n_{i} / n_{t}$
$\overline{\mathrm{D}}=\varepsilon_{0} \overline{\mathrm{E}}+\overline{\mathrm{P}}$	$\theta_{c}=\sin ^{-1}\left(n_{t} / n_{i}\right)$
$\nabla \bullet \overline{\mathrm{D}}=\rho_{\mathrm{f}}, \tau=\varepsilon / \sigma$	$\theta_{B}=\tan ^{-1}\left(\varepsilon_{t} / \varepsilon_{i}\right)^{0.5}$ for TM
$\nabla \bullet \varepsilon_{0} \mathrm{E}=\rho_{\mathrm{f}}+\rho_{\mathrm{p}}$	$\theta>\theta_{c} \Rightarrow \hat{\bar{E}}_{t}=\hat{\bar{E}}_{i} T e^{+\alpha x-j k_{z} z}$
$\nabla \bullet \overline{\mathrm{P}}=-\rho_{\mathrm{p}}, \overline{\mathrm{J}}=\sigma \overline{\mathrm{E}}$	$\bar{k}=\bar{k}^{\prime}-j \bar{k}^{\prime \prime}$
$\overline{\mathrm{B}}=\mu \overline{\mathrm{H}}=\mu_{\mathrm{o}}(\overline{\mathrm{H}}+\overline{\mathrm{M}})$	$\Gamma=T-1$
$\varepsilon(\omega)=\varepsilon\left(1-\omega_{\mathrm{p}}{ }^{2} / \omega^{2}\right), \omega_{p}=\left(N e^{2} / m \varepsilon\right)^{0.5}$ (plasma)	$T_{T E}=2 /\left(1+\left[\eta_{i} \cos \theta_{t} / \eta_{t} \cos \theta_{i}\right]\right)$
$\varepsilon_{e f f}=\varepsilon(1-j \sigma / \omega \varepsilon)$	$T_{T M}=2 /\left(1+\left[\eta_{t} \cos \theta_{t} / \eta_{i} \cos \theta_{i}\right]\right)$

Skin depth $\delta=(2 / \omega \mu \sigma)^{0.5}[\mathrm{~m}]$

Radiating Waves

$\nabla^{2} \bar{A}-\frac{1}{c^{2}} \frac{\partial^{2} \bar{A}}{\partial t^{2}}=-\mu J_{f}$
$\nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-\frac{\rho_{f}}{\varepsilon}$
$\bar{A}=\int_{V^{\prime}} \frac{\mu J_{f}\left(t-r_{Q P} / c\right) d V^{\prime}}{4 \pi r_{Q P}}$
$\Phi=\int_{V^{\prime}} \frac{\rho_{f}\left(t-r_{Q P} / c\right) d V^{\prime}}{4 \pi \varepsilon r_{Q P}}$
$\bar{E}=-\nabla \Phi-\frac{\partial \bar{A}}{\partial t}, \bar{B}=\nabla \times \bar{A}$
$\hat{\Phi}(r)=\int_{V^{\prime}} \hat{\rho}(\bar{r}) e^{-j k\left\|r^{\prime}-\bar{r}\right\|} /\left(4 \pi \varepsilon\left\|\bar{r}^{\prime}-r\right\|\right.$
$\hat{\overline{\mathrm{A}}}(\mathrm{r})=\int_{\mathrm{V}^{\prime}}\left(\mu \hat{\mathrm{J}}(\overline{\mathrm{r}}) \mathrm{e}^{-\mathrm{jk} \hat{\mathrm{k}} \mathrm{r}^{\prime}-\mathrm{F}} / 4 \pi\left\|\overline{\mathrm{r}}^{\prime}-\overline{\mathrm{r}}\right\|\right)$
$\hat{\mathrm{E}}_{\text {fif }}=\sqrt{\frac{\mu}{\varepsilon}} \hat{\mathrm{H}}_{\text {fi¢ }}=(j \eta \mathrm{k} \hat{\mathrm{I}} \mathrm{d} / 4 \pi \mathrm{r}) \mathrm{e}^{-\mathrm{jkr}}$
$\nabla^{2} \hat{\Phi}+\omega^{2} \mu \varepsilon \hat{\Phi}=-\hat{\rho} / \varepsilon, \quad \Phi(x, y, z, t)$
$\nabla^{2} \hat{\mathrm{~A}}+\omega^{2} \mu \varepsilon \hat{\mathrm{~A}}=-\mu \hat{\mathrm{J}}, \quad \bar{A}(x, y, z, t)$
ces, Motors, and Generator

$\overline{\mathrm{J}}=\sigma(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \overline{\mathrm{B}})$
$\overline{\mathrm{F}}=\overline{\mathrm{I}} \times \overline{\mathrm{B}}\left[\mathrm{Nm}^{-1}\right]$ (force per unit length)
$\overline{\mathrm{E}}=-\overline{\mathrm{v}} \times \overline{\mathrm{B}}$ inside perfectly conducting wire $(\sigma \rightarrow \infty)$
Max f/A $=\mathrm{B}^{2} / 2 \mu, \mathrm{D}^{2} / 2 \varepsilon\left[\mathrm{Nm}^{-2}\right]$
$v i=\frac{d w_{T}}{d t}+f \frac{d z}{d t}$

$f_{M}(\lambda, x)=-\left.\frac{\partial W_{M}}{\partial x}\right|_{\lambda}=-\frac{1}{2} \lambda^{2} \frac{d}{d x}(1 / L(x))=\frac{1}{2} I^{2} \frac{d L(x)}{d x} \quad \mathrm{c}_{\mathrm{s}}=\mathrm{v}_{\mathrm{p}}=\mathrm{v}_{\mathrm{g}}=\left(\gamma \mathrm{P}_{\mathrm{o}} / \mathrm{\rho}_{\mathrm{o}}\right)^{0.5} \quad$ or $\left(\mathrm{K} / \rho_{\mathrm{o}}\right)^{0.5}$
$f_{E}(q, x)=-\left.\frac{\partial W_{E}}{\partial x}\right|_{q}=-\frac{1}{2} q^{2} \frac{d}{d x}(1 / C(x))=\frac{1}{2} v^{2} \frac{d C(x)}{d x}$

Optical Communications
$\eta_{\mathrm{s}}=\mathrm{p} / \mathrm{u}=\rho_{\mathrm{o}} \mathrm{c}_{\mathrm{s}}=\left(\rho_{\mathrm{o}} \gamma \mathrm{P}_{\mathrm{o}}\right)^{0.5}$ gases
$\eta_{\mathrm{s}}=\left(\rho_{\mathrm{o}} \mathrm{K}\right)^{0.5}$ solids, liquids
Wireless Communications and Radar
$\mathrm{G}(\theta, \phi)=\mathrm{P}_{\mathrm{r}} /\left(\mathrm{P}_{\mathrm{R}} / 4 \pi \mathrm{r}^{2}\right)$
$P_{R}=\int_{4 \pi} P_{r}(\theta, \phi, r) r^{2} \sin \theta d \theta d \phi$
$\mathrm{P}_{\mathrm{rec}}=\mathrm{P}_{\mathrm{r}}(\theta, \phi) \mathrm{A}_{\mathrm{e}}(\theta, \phi)$
$\mathrm{A}_{\mathrm{e}}(\theta, \phi)=\mathrm{G}(\theta, \phi) \lambda^{2} / 4 \pi$
$G(\theta, \phi)=1.5 \sin ^{2} \theta$ (Hertzian Dipole)
$\mathrm{R}_{\mathrm{r}}=\mathrm{P}_{\mathrm{R}} /\left\langle\mathrm{i}^{2}(\mathrm{t})\right\rangle$
$E_{f f}(\theta \cong 0)=\left(j e^{j k r} / \lambda r\right) \int_{A} E_{t}(x, y) e^{j k_{x} x+j k_{y} y} d x d y$
$\hat{\mathrm{E}}_{\mathrm{Z}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \overline{\mathrm{E}}^{-\mathrm{jk} \mathrm{k}_{\mathrm{i}}}=$ (element factor)(array f)
$\mathrm{E}_{\mathrm{bit}} \geq \sim 4 \times 10^{-20}[\mathrm{~J}]$
$\underline{Z}_{12}=\underline{Z}_{21}$ if reciprocity
At $\omega_{0},\left\langle w_{e}\right\rangle=\left\langle w_{m}\right\rangle$
$\left\langle\mathrm{w}_{\mathrm{e}}\right\rangle=\int_{\mathrm{V}}\left(\varepsilon|\hat{\mathrm{E}}|^{2} / 4\right)_{\mathrm{dv}}$
$\left\langle\mathrm{w}_{\mathrm{m}}\right\rangle=\int_{\mathrm{V}}\left(\mu|\hat{\mathrm{H}}|^{2} / 4\right)_{\mathrm{dv}}$
$\mathrm{Q}_{\mathrm{n}}=\omega_{\mathrm{n}} \mathrm{w}_{\mathrm{Tn}} / \mathrm{P}_{\mathrm{n}}=\omega_{\mathrm{n}} / 2 \alpha_{\mathrm{n}}$
$\mathrm{f}_{\text {mnp }}=(\mathrm{c} / 2)\left([\mathrm{m} / \mathrm{a}]^{2}+[\mathrm{n} / \mathrm{b}]^{2}+[\mathrm{p} / \mathrm{d}]^{2}\right)^{0.5}$
$\mathrm{s}_{\mathrm{n}}=\mathrm{j} \omega_{\mathrm{n}}-\alpha_{\mathrm{n}}$

Acoustics

$\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\mathrm{p}, \overline{\mathrm{U}}=\overline{\mathrm{U}}_{\mathrm{o}}+\mathrm{u}$
$\nabla \mathrm{p}=-\rho_{\mathrm{o}} \partial \overline{\mathrm{u}} / \partial \mathrm{t}$
$\nabla \bullet \overline{\mathrm{u}}=-\left(1 / \gamma \mathrm{P}_{\mathrm{o}}\right) \partial \mathrm{p} / \partial \mathrm{t}$
$\left(\nabla^{2}-\mathrm{k}^{2} \partial^{2} / \partial \mathrm{t}^{2}\right) \mathrm{p}=0$
$\mathrm{k}^{2}=\omega^{2} / \mathrm{c}_{\mathrm{s}}{ }^{2}=\omega^{2} \rho_{\mathrm{o}} / \gamma \mathrm{P}$ 。
$\mathrm{p}, \overline{\mathrm{u}}_{\perp}$ continuous at boundaries

$\mathrm{E}=\mathrm{hf}$, photons or phonons	$\mathrm{p}=\mathrm{p}_{\mathrm{e}} \mathrm{e}^{-\mathrm{jkz}}+\mathrm{p} . \mathrm{e}^{\text {+ } \mathrm{jkz}}$
$\mathrm{hf} / \mathrm{c}=$ momentum $\left[\mathrm{kg} \mathrm{ms}^{-1}\right]$	$\underline{\mathrm{u}}_{z}=\eta_{\mathrm{s}} \mathrm{s}^{-1}\left(\mathrm{p}_{+} \mathrm{e}^{-\mathrm{jk} z}-\mathrm{p} \mathrm{e}^{+\mathrm{j} \mathrm{j} z}\right)$
$\mathrm{dn}_{2} / \mathrm{dtt}=-\left[\mathrm{An}_{2}+\mathrm{B}\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\right]$	$\int_{A} \bar{u} p \bullet d \bar{a}+(\mathrm{d} / \mathrm{dt}) \int_{\mathrm{V}}\left(\rho_{\mathrm{o}}\|\overline{\mathrm{u}}\|^{2} / 2+\mathrm{p}^{2} / 2 \gamma \mathrm{P}_{\mathrm{o}}\right) \mathrm{dV}$
Transmission Lines	
Time Domain	
$\partial \mathrm{v}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{z}=-\mathrm{L} \partial \mathrm{i}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{t}$	
$\partial \mathrm{i}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{z}=-\mathrm{C} \partial \mathrm{v}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{t}$	
$\partial^{2} \mathrm{v} / \partial \mathrm{z}^{2}=\mathrm{LC} \partial^{2} \mathrm{v} / \partial \mathrm{t}^{2}$	
$\mathrm{v}(\mathrm{z}, \mathrm{t})=\mathrm{V}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})+\mathrm{V}_{\text {(}}(\mathrm{t}+\mathrm{z} / \mathrm{c})$	
$\mathrm{i}(\mathrm{z}, \mathrm{t})=\mathrm{Y}_{0}\left[\mathrm{~V}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})-\mathrm{V}_{.}(\mathrm{t}+\mathrm{z} / \mathrm{c})\right]$	
$\mathrm{c}=(\mathrm{LC})^{-0.5}=(\mu \varepsilon)^{-0.5}$	
$\mathrm{Z}_{\mathrm{o}}=\mathrm{Y}_{0}^{-1}=(\mathrm{L} / \mathrm{C})^{0.5}$	
$\Gamma_{\mathrm{L}}=\mathrm{V} / \mathrm{V}_{+}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{o}}\right)$	
Frequency Domain	
$\left(\mathrm{d}^{2} / \mathrm{dz}^{2}+\omega^{2} \mathrm{LC}\right) \hat{\mathrm{V}}(\mathrm{z})=0$	
$\hat{\mathrm{V}}(\mathrm{z})=\hat{\mathrm{V}}_{+} \mathrm{e}^{-\mathrm{j} k z}+\hat{\mathrm{V}}_{-} \mathrm{e}^{\mathrm{j} k \mathrm{k} z}, v(z, t)=\operatorname{Re}\left[\hat{V}(z) e^{j \omega t}\right]$	
$\hat{\mathrm{I}}(\mathrm{z})=\mathrm{Y}_{0}\left[\hat{\mathrm{~V}}_{+} \mathrm{e}^{\mathrm{j} k \mathrm{kz}}-\hat{\mathrm{V}}_{-} \mathrm{e}^{\mathrm{j} \mathrm{k} z}\right], i(z, t)=\operatorname{Re}\left[\hat{\mathrm{I}}(z) e^{j \omega t}\right]$	
$\mathrm{k}=2 \pi / \lambda=\omega / \mathrm{c}=\omega(\mu \varepsilon)^{0.5}$	
$\mathrm{Z}(\mathrm{z})=\hat{\mathrm{V}}(\mathrm{z}) / \mathrm{I}(\mathrm{z})=\mathrm{Z}_{\mathrm{o}} \mathrm{Z}_{\mathrm{n}}(\mathrm{z})$	
$\mathrm{Z}_{\mathrm{n}}(\mathrm{z})=[1+\Gamma(\mathrm{z})] /[1-\Gamma(\mathrm{z})]=\mathrm{R}_{\mathrm{n}}+\mathrm{j} \mathrm{X}_{\mathrm{n}}$	
$\left.\Gamma(\mathrm{z})=\left(\mathrm{V}_{-} / \mathrm{V}_{+}\right) \mathrm{e}^{2 \mathrm{jkz}}=\left[\mathrm{Z}_{\mathrm{n}}(\mathrm{z})-1\right] / / \mathrm{Z}_{\mathrm{n}}(\mathrm{z})+1\right]$	
$\mathrm{Z}(\mathrm{z})=\mathrm{Z}_{\mathrm{o}}\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{j} \mathrm{Z}_{\mathrm{o}} \tan \mathrm{kz}\right) /\left(\mathrm{Z}_{\mathrm{o}}-\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \mathrm{kz}\right)$	
VSWR $=\left\|\mathrm{V}_{\text {max }}\right\| / / \mathrm{V}_{\text {min }} \mid$	

