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6.013/ESD.013J — Electromagnetics and Applications Fall 2005 

Problem Set 11 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 11.1 

A 

Figure 1: Impedance model. (Image by MIT OpenCourseWare.) 

V0
VRMS = √

2


V 2
RMS 
� 

P = = VRMS = PRr

Rr 

⇒


= V0 = 
�

(2)(70)(105) = 3741.7 Volts (peak) ⇒ 

B 

Figure 2: Surface area of half-hemisphere. (Image by MIT OpenCourseWare.) 
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Problem Set 11 6.013, Fall 2005 

2πr2I = P = I = 
P 

= 
100 × 103 

= 6.366 × 10−6 Watts/m2 ⇒ 
2πr2 2π(50 × 103)2 

[Pr]max = IA = (6.336 × 10−6 W/m2)(10 m 2) = 63.66× 10−6 Watts 

Problem 11.2 

A 

E(r, θ, t) in the far field limit 

Ê = Re j 
ηkId 

e −jkr sin θejωt êθ
4πr 

ηkId 
= −

4πr 
sin θ sin(ωt − kr) êθ 

B 

ω c 
k = = λ = 

c 
⇒ 

f 
�2
�
�
�

π Idf c 3Ptotal 
Ptotal = η0 = f = ⇒

3 Id πη0c 

3 × 108 3(1) 
f =

(1)(0.1) π(377) 
= 150.99× 106 Hz 

Id 
2λr 

2 

sin2 θ [W/m2] 
�η0

�

Ŝ = r̂ 
2 

First of all, the farthest you can go is when θ = ±π/2 because the power directed there is maximum since 
sin2 θ = 1. 

A|S|max = P∗ 

1 2�η0
� 2 

A 
2 

r ≈ 1.1 × 109 m 

× 10−20 2(3 × 108) 

× 106) 

Idf 
= P∗ = ⇒ 

r 
≈

2cr (377)(0.1) (0.1)(150.99

2 
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Problem 11.3


Figure 3: Dipole configuration and spherical coordinate system. (Image by MIT OpenCourseWare.) 

A 

Intensity of radiation in the far field? This situation is similar to that developed in lecture, but the dipoles 
are oriented on the y-axis rather than the x-axis. 
For a single dipole, the field on the x, y-plane is 

π jk ̂ˆ Ideff −jkr E(r, θ = , φ) = êθ η e 
2 4πr 

For two dipoles, Î1 = I0 and Î2 = I0e
jψ , both with length deff 

ˆ jkI0deff −jkr1 
jkI0deff jψ −jkr2Eθ,total = η e + η e e 

4πr1 4πr2


a

r1 ≈ r −

2 
sinφ 

a 
r2 ≈ r + sinφ 

2


These small differences only matter for phase


Figure 4: Triangle details. (Image by MIT OpenCourseWare.) 
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jkI0deff � jψ
�a 

2

a 
2Êθ,total = −jkr+jk sin φ −jkr−+ sin φη 

= η e

e 

jkI0deff jψ/2 −jkr 

e e
4πr 

ψ 
2

ψ 
2

a 
2

a 
2

j(k sin φ− ) −j(k+ sin φ− )e e e 
4πr 

= η
jkI0deff 

ejψ/2 e −jkr 2 cos 

� 

k
a 

sinφ − ψ 
� 

4πr 2 2 

For our case, ψ = 0 

Êθ,total = η
jkI0deff 

e −jkr 2 cos 
� 

k
a 

sinφ 
� 

4πr 2 

Intensity = �S� = êr 
2 η 4πr 2 

1 |Êθ|2 
= êr2η 

�
kI0deff 

�2 

cos 2 
� 

k
a 

sinφ 
� 

B 

a 2π �2λ�
a = 2λ, k = = 2π 

2 λ� 2�

�
kI0deff 

�2


�S� = êr2η 
4πr 

cos 2(2π sinφ) 

φmax? 

cos 2(2π sinφmax) = 1 

2� n�π sinφmax = π, n = 0, ±1, ±2, . . . 
n 

sinφmax = 
2 

n = 0 sinφmax = 0 φmax = 0, 180◦ 

n = ±1 sinφmax = ±1/2 φmax = ±30◦ , ±150◦ 

n = ±2 sinφmax = ±1 φmax = ±90◦ 

φmin? 

cos 2(2π sinφmin) = 0 

π 
2�π sinφmin = (2m − 1) , m = 0, ±1, ±2, . . . 

2
1 

sinφmin = (2m − 1) 

m = 1, 0 sinφmin = ±1/4 φmin = ±14.48◦ , ±165.52◦ 

m = 2, −1 sinφmin = ±3/4 φmin = ±48.59, ±131.41◦ 

4 
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Figure 5: Plot of radiation pattern. (Image by MIT OpenCourseWare.) 

Problem 11.4 

A dipole in the êz-direction has an electric field in the far-field, in spherical coordinates, of 

Ê = η
jkId 

e −jkr êθ sin θ 
4πr 

Figure 6: Dipole orientation. (Image by MIT OpenCourseWare.) 

We have a dipole in the êx-direction. We can rotate the cartesian system such that we can use the solution 
for the ẑ-directed dipole. If we transform the spherical solution back to cartesian coordinates correctly we 
will have found our solution. 
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Figure 7: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.) 

We are only interested in the z-axis: θ = π/2, φ = ±π/2 

Ê = η
jIkd 

e −jkr êθ
4πr 

On z-axis: 

êθ = ex, r = z−ˆ | |


Ê = exη 
jIkd 

e −jk|z|
−ˆ
4π|z| 

This dipole has current I = Î0 and length d = deff : 

ˆ jÎ0deff −jk|z|E = exη e−ˆ
4π|z| 

We also have a dipole in the êy-direction. We use the same method: The z-axis: θ = π/2, φ = ±π/2 

ˆ jIkd −jkrˆE = η e eθ
4πr 

Figure 8: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.) 

On z-axis, êθ = −êy, r = |z| 

Ê = ey 
jIkd 

e −jk|z|−ηˆ
4π|z| 
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This dipole has I = jÎ0 and d = deff. 

Ê = ηêy 
kÎ0deff 

e −jk|z| 
4π z| | 

Total field is given by superposition: 

Êtotal = (−jêx + êy)η
kÎ0deff 

e −jk|z| 
4π z| | 

On the +z-axis, z > 0 

Êtotal = (−jêx + êy)η
kÎ0deff 

e −jkz 

4πz 

B 

Polarization: As time advances, how does the direction and amplitude of the electric field change? For this, 
we need to look at the real E-field, not just the complex amplitude: 

Ê = Re{Êejωt = Re 

� 

ex[cos(ωt − kz) + j sin(ωt − kz)] + êy[cos(ωt − kz) + j sin(ωt − kz)])η
kÎ0deff 

� 

} (−jˆ
4πz 

Ê = (êx sin(ωt − kz) + êy cos(ωt − kz))η
kI0deff 

4πz 

Let us look at one point in space, z = z1, and see how the direction and magnitude of the E-field changes: 
Only the direction of the field changes as time advances; the magnitude remains the same. Thus, it is 

t � 
k z1 

Ω 

t � 
k z1 

Ω 
+ 
Π 

2 Ω 

x 

y 

ωt − kz1 = 0 → Ê = êyη I0 kdeff 
4πz1 

ωt − kz1 = π 
2 → Ê = êxη I0 kdeff 

4πz1 

Figure 9: Time evolution of electric field. (Image by MIT OpenCourseWare.) 

circularly polarized, since the field traces out a circle. 
To determine whether the polarization is right-handed or left-handed, curl your fingers of both hands in 

the direction of the path traced out by the field. If your right thumb points in the direction of propagation 
(+z in this case), then the field is right-handed. If your left thumb points in the direction of propagation, 
however, it is left-handed. In this case we have a left-handed circularly polarized wave. 
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Find the magnetic field: 

∂H 
∇ × E = −µ 

∂t 
∇ × ˆ −µjω ̂E = H 

Ex


−êx 
∂z 

+ êy 
∂z 

= H

∂Êy ∂Êx −µjω ̂

We assume that 1/z varies much slower than e−jkz , so we can treat 1/z as a constant: 

∂Êy 
= −jk Êy, 

∂Êx 
= −jk Êx

∂z ∂z 

kÎ0deff −jkz ey
kÎ0deff −jkz −µjω ̂−êx(−jk)η 

4πz 
e + ˆ (−jk)(−j)η 

4πz 
e = H


(jˆ ey)η
k2Î0deff 

e −jkz = −µjω ̂ 
ex − ˆ
4πz 

H 

êx êy êz 

∂ 
Ê only varies with z∂ ∂ = only has Ex, Ey components ⇒

∂x ∂y ∂z 
Ey Ez 

2ω ��µε Î0deff k2Î0deff µ
Ĥ = (−êx − jêy)η −jkz = −jkz (−êx − jêy)e e 

ω4πz µω4πz ε 

ω
√
µεÎ0deff −jkz = −(êx + jêy) e 
4πz 

= −(êx + jêy) 
kÎ0deff 

e −jkz 

4πz 

D 

ˆ=�S�
2

1
Re{Ê× H ∗ } 

1 kI0deff −jkz kI0deff jkz Re (−jêx + êy)η × (−êx + jêy)= e e
2 4πz 4πz 

�
kI0deff 

�2
� 

1 
= Re (êz + êz)η 

2 4πz 
�
kI0deff 

�2 

= êzη 
4πz 
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Problem 11.5 

A 

Figure 10: Dipole configuration. (Image by MIT OpenCourseWare.) 

In general: 

jkI0deff −jkr1 
jkI0e

jψ deff −jkr2Eθ,total = η e + η e 
4πr1 4πr2 

= η
jkI0deff 

ejψ/2 
� 

e −jψ/2 ejk a 
2 sin φ + ejψ/2 e −jk a sin φ

� 

2 

4πr


= η
jkI0deff 

ejψ/22 cos 

� 

k
a 

sinφ − ψ 
�


4πr 2 2 

1 Êθ
2 

�
kI0deff 

�2
2 

� 
a ψ 

� 

�S� = êr 
2

|
η 
|

= êr2η 
4πr 

cos k 
2 

sinφ −
2 

a 2�π λ�a = λ, k = = π, ψ = 0 
2 λ� 2�


�
kI0deff 

�2


�S� = êr2η 
4πr 

cos 2(π sinφ) 

Nulls: 

cos(π sinφ) = 0 

π 
π sinφ = (2n − 1) , n = 0, ±1, ±2, . . . 

2


sinφ = (2n − 1)

2


1

n = 1, 0 sinφ = ±

2 
φ = ±30◦ , ±150◦ 

Peaks: 

cos 2(π sinφ) = 1 

�π sinφ = m� m =π, 0, ±1, ±2, . . .


sinφ = m


m = 0 sinφ = 0 φ = 0, 180◦


m = ±1 sinφ = ±1 φ = ±90◦
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Figure 11: Plot of radiation pattern. (Image by MIT OpenCourseWare.) 

B 

Figure 12: Dipole configuration. (Image by MIT OpenCourseWare.) 

π λ 
I2 = I1e

jψ ψ = a = 
2 4 

ka π 
= 

2 4 
�
kI0deff 

�2
2 
�π π � 

�S� = êr2η 
4πr 

cos 
4 

sinφ −
4 
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Nulls: 
�π π � 

cos sinφ − = 0 
4 4 
π π π 

sinφ − = (2m − 1) , m = 0, ±1, ±2, . . . 
4 4 2

sinφ = 4m − 1 

m = 0 sinφ = −1 φ = −90◦ 

Peaks: 
�π π � 

cos 2 sinφ − = 1 
4 4 
π π π 

sinφ − = (2m − 1) , m = 0, ±1, ±2, . . . 
4 4 2


sinφ = 4m + 1


n = 0 sinφ = 1 φ = 90◦ 

Figure 13: Plot of radiation pattern. (Image by MIT OpenCourseWare.) 
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Figure 14: Dipole configuration. (Image by MIT OpenCourseWare.) 

� 
N 

� 

π jkηdeff a 
2Êθ(r, θ = , φ)

2
ÎN e

jkn sin φ −jkr I2 = −I1, I3 = I1 = e ,
4πr 

−N 

array factor 

π jkηdeff � 
sin φ

�a 
2

a 
2Êθ(r, θ = , φ)

2
jk sin φ −jk −jkrI0 − 1= e e e 

4πr 

= 
jkηdeffI0 

e −jkr[2 cos 
� 

k
a 

sinφ 
� 

− 1]
4πr 2 

�
kI0deff 

�2 � a �2 

�S� = êrη 2 cos(k sinφ) − 1 
4πr 2 

a 2π 2�λ�
a = 2λ, k = = 2π 

2 λ� 2�

�S� = êrη 

�
kI0deff 

�2 

[2 cos(2π sinφ) − 1]2 
4πr 

Nulls: 

2 cos(2π sinφ) = 1 

cos(2π sinφ) = 

π 5π 7π 
2π sinφ = , . . .±

3
, ±

3 
, ±

3 
1 5 7 

sinφ = ±
6
, ±

6 �
±��

6
(larger than 1),

φ = ±9.59◦ , ±170.41◦ , ±62.71◦ , ±117.29◦ 

Peaks: 
Largest Peaks? 

12 
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cos(2π sinφ) = −1 [2 cos(2π sinφ) − 1]2 = 9


2π sinφ = ±π, ±3π, ±5π, . . .


sinφ = ±
2

1 
,
�
±��

2

3 
= ⇒ φ = ±30◦ , ±150◦ 

Smaller Peaks? 

cos(2π sinφ) = 1 [2 cos(2π sinφ) − 1]2 = 1


2π sinφ = 0, ±2π, . . .


sinφ = 0, ±1


φ = 0◦ , 180◦ , ±90◦


What about cos(2π sinφ) = 0? Though [2 cos(2π sinφ) − 1]2 = 1 as well, when cos(2π sinφ) = 0, this is not 
a peak as can be seen by taking the second derivative with respect to φ and evaluating it at that point. 

Figure 15: Plot of radiation pattern. (Image by MIT OpenCourseWare.) 
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Problem 11.6 

A 

Figure 16: Dipole configuration. (Image by MIT OpenCourseWare.) 

Putting 2 identical dipoles 1/2 a wavelength apart means they will cancel along the x-axis. But since neither 
is delayed with respect to each other, they add on the y-axis to a maximum. 

�
kI0deff 

�2
2 
�π � 

�S� = êr2η cos cosφ 
4πr 2 

B 

Figure 17: Dipole configuration. (Image by MIT OpenCourseWare.) 

This is the same pattern as in 11.3(b), but rotated. 

�
kI0deff 

�2
2 
�π π � 

�S� = êr2η 
4πr 

cos 
4 

cosφ −
4 

14 
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We need to come up with a maximum at φ = 0, but a minimum at φ = π. We have 2 dipoles of equal 
amplitude, separated by a distance a. 

E = η
jkI1deff 

ejψ/2 e −jkr 2 cos 

� 

k
a 

cosφ − ψ 
� 

4πr	 2 2 

Figure 18: Dipole configuration. (Image by MIT OpenCourseWare.) 

φ = 0 = must add to a peak ⇒ 

a ψ 
2 cos k = 2 

2 
−

2 

a ψ 
k 

2 
−

2 
= 0, ±2π, ±4π, . . . 

φ = π = must be a null ⇒ 

a ψ π 3π −k 
2�
−

2�
= ±

2�
, ±

2�
, . . . 

We want the solution with the fewest nulls and peaks, so let us take the lowest angles: 

ka − ψ = 0 
We need a positive a, so we use 

+ − ka − ψ = π 
= 

ψ = 3π 

3π 
= −π 

2 2 

−2ψ = π 
π 

⇒ 
a = 
ka	

3π
−
� 2 
λ 

� 
=
=
0 

3λ 
2 2π 4= ψ = 2⇒ −

15 
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Figure 19: Dipole configuration. (Image by MIT OpenCourseWare.) 

�
kI0deff 

�2
2 

�
3π π 

� 

�S� = êr2η 
4πr 

cos 
4 

cosφ +
4 
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