MIT OpenCourseWare
http://ocw.mit.edu
6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:
Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.013/ESD.013J - Electromagnetics and Applications	Fall 2005	
Problem Set 11 - Solutions		
Prof. Markus Zahn		MIT OpenCourseWare

Problem 11.1

A

Figure 1: Impedance model. (Image by MIT OpenCourseWare.)
$V_{\text {RMS }}=\frac{V_{0}}{\sqrt{2}}$
$P=\frac{V_{\mathrm{RMS}}^{2}}{R_{r}} \Longrightarrow V_{\mathrm{RMS}}=\sqrt{P R_{r}}$
$\Longrightarrow V_{0}=\sqrt{(2)(70)\left(10^{5}\right)}=3741.7$ Volts (peak)
B

Figure 2: Surface area of half-hemisphere. (Image by MIT OpenCourseWare.)

$$
2 \pi r^{2} I=P \Longrightarrow I=\frac{P}{2 \pi r^{2}}=\frac{100 \times 10^{3}}{2 \pi\left(50 \times 10^{3}\right)^{2}}=6.366 \times 10^{-6} \mathrm{Watts} / \mathrm{m}^{2}
$$

C

$$
\left[P_{r}\right]_{\max }=I A=\left(6.336 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right)\left(10 \mathrm{~m}^{2}\right)=63.66 \times 10^{-6} \mathrm{Watts}
$$

Problem 11.2

A
$E(r, \theta, t)$ in the far field limit

$$
\begin{aligned}
\hat{\mathbf{E}} & =\operatorname{Re}\left\{j \frac{\eta k I d}{4 \pi r} e^{-j k r} \sin \theta e^{j \omega t} \hat{\mathbf{e}}_{\theta}\right\} \\
& =-\frac{\eta k I d}{4 \pi r} \sin \theta \sin (\omega t-k r) \hat{\mathbf{e}}_{\theta}
\end{aligned}
$$

B

$$
\begin{aligned}
& k=\frac{\omega}{c} \Longrightarrow \lambda=\frac{c}{f} \\
& P_{\text {total }}=\eta_{0} \frac{\pi}{3}\left|\frac{I d f}{c}\right|^{2} \Longrightarrow f=\frac{c}{I d} \sqrt{\frac{3 P_{\text {total }}}{\pi \eta_{0}}} \\
& f=\frac{3 \times 10^{8}}{(1)(0.1)} \sqrt{\frac{3(1)}{\pi(377)}}=150.99 \times 10^{6} \mathrm{~Hz}
\end{aligned}
$$

C

$$
\hat{\mathbf{S}}=\hat{\mathbf{r}}\left(\frac{\eta_{0}}{2}\right)\left|\frac{I d}{2 \lambda r}\right|^{2} \sin ^{2} \theta\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

First of all, the farthest you can go is when $\theta= \pm \pi / 2$ because the power directed there is maximum since $\sin ^{2} \theta=1$.

$$
\begin{aligned}
& A|\mathbf{S}|_{\max }=P_{*} \\
& A\left(\frac{\eta_{0}}{2}\right)\left|\frac{I d f}{2 c r}\right|^{2}=P_{*} \Longrightarrow \frac{1}{r} \approx \sqrt{\frac{2 \times 10^{-20}}{(377)(0.1)}}\left(\frac{2\left(3 \times 10^{8}\right)}{(0.1)\left(150.99 \times 10^{6}\right)}\right) \\
& r \approx 1.1 \times 10^{9} \mathrm{~m}
\end{aligned}
$$

Problem 11.3

Figure 3: Dipole configuration and spherical coordinate system. (Image by MIT OpenCourseWare.)

A

Intensity of radiation in the far field? This situation is similar to that developed in lecture, but the dipoles are oriented on the y-axis rather than the x-axis.
For a single dipole, the field on the x, y-plane is

$$
\hat{\mathbf{E}}\left(r, \theta=\frac{\pi}{2}, \phi\right)=\hat{\mathbf{e}}_{\theta} \eta \frac{j k \hat{I} d_{\mathrm{eff}}}{4 \pi r} e^{-j k r}
$$

For two dipoles, $\hat{I}_{1}=I_{0}$ and $\hat{I}_{2}=I_{0} e^{j \psi}$, both with length $d_{\text {eff }}$

$$
\begin{aligned}
& \hat{E}_{\theta, \text { total }}=\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r_{1}} e^{-j k r_{1}}+\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r_{2}} e^{j \psi} e^{-j k r_{2}} \\
& r_{1} \approx r-\frac{a}{2} \sin \phi \\
& r_{2} \approx r+\frac{a}{2} \sin \phi
\end{aligned}
$$

These small differences only matter for phase

Figure 4: Triangle details. (Image by MIT OpenCourseWare.)

$$
\begin{aligned}
\hat{E}_{\theta, \text { total }} & =\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r}\left(e^{-j k r+j k \frac{a}{2} \sin \phi}+e^{-j k r-\frac{a}{2} \sin \phi} e^{j \psi}\right) \\
& =\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r} e^{j \psi / 2} e^{-j k r}\left(e^{j\left(k \frac{a}{2} \sin \phi-\frac{\psi}{2}\right)}+e^{-j\left(k \frac{a}{2} \sin \phi-\frac{\psi}{2}\right)}\right) \\
& =\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r} e^{j \psi / 2} e^{-j k r} 2 \cos \left(k \frac{a}{2} \sin \phi-\frac{\psi}{2}\right)
\end{aligned}
$$

For our case, $\psi=0$

$$
\begin{aligned}
& \hat{E}_{\theta, \text { total }}=\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r} e^{-j k r} 2 \cos \left(k \frac{a}{2} \sin \phi\right) \\
& \text { Intensity }=\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} \frac{1}{2} \frac{\left|\hat{E}_{\theta}\right|^{2}}{\eta}=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(k \frac{a}{2} \sin \phi\right)
\end{aligned}
$$

B

$$
\begin{aligned}
& a=2 \lambda, k \frac{a}{2}=\frac{2 \pi}{\not X} \frac{\not \partial X}{\not 2}=2 \pi \\
& \langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}(2 \pi \sin \phi)
\end{aligned}
$$

$\phi_{\max } ?$

$$
\begin{aligned}
& \cos ^{2}\left(2 \pi \sin \phi_{\text {max }}\right)=1 \\
& 2 \nsim \sin \phi_{\max }=n \notin, n=0, \pm 1, \pm 2, \ldots \\
& \sin \phi_{\text {max }}=\frac{n}{2} \\
& n=0 \quad \sin \phi_{\max }=0 \quad \phi_{\max }=0,180^{\circ} \\
& n= \pm 1 \quad \sin \phi_{\max }= \pm 1 / 2 \quad \phi_{\max }= \pm 30^{\circ}, \pm 150^{\circ} \\
& n= \pm 2 \quad \sin \phi_{\max }= \pm 1 \quad \phi_{\max }= \pm 90^{\circ}
\end{aligned}
$$

$\phi_{\text {min }} ?$

$$
\begin{aligned}
& \cos ^{2}\left(2 \pi \sin \phi_{\min }\right)=0 \\
& 2 \pi \sin \phi_{\min }=(2 m-1) \frac{\mathscr{K}}{2}, m=0, \pm 1, \pm 2, \ldots \\
& \sin \phi_{\min }=(2 m-1) \frac{1}{4} \\
& m=1,0 \quad \sin \phi_{\min }= \pm 1 / 4
\end{aligned} \quad \phi_{\min }= \pm 14.48^{\circ}, \pm 165.52^{\circ} .
$$

Figure 5: Plot of radiation pattern. (Image by MIT OpenCourseWare.)

Problem 11.4

A dipole in the $\hat{\mathbf{e}}_{z}$-direction has an electric field in the far-field, in spherical coordinates, of

$$
\hat{\mathbf{E}}=\eta \frac{j k I d}{4 \pi r} e^{-j k r} \hat{\mathbf{e}}_{\theta} \sin \theta
$$

Figure 6: Dipole orientation. (Image by MIT OpenCourseWare.)
We have a dipole in the $\hat{\mathbf{e}}_{x}$-direction. We can rotate the cartesian system such that we can use the solution for the $\hat{\mathbf{z}}$-directed dipole. If we transform the spherical solution back to cartesian coordinates correctly we will have found our solution.

Figure 7: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.)
We are only interested in the z-axis: $\theta=\pi / 2, \phi= \pm \pi / 2$

$$
\hat{\mathbf{E}}=\eta \frac{j I k d}{4 \pi r} e^{-j k r} \hat{\mathbf{e}}_{\theta}
$$

On z-axis:

$$
\begin{aligned}
& \hat{\mathbf{e}}_{\theta}=-\hat{\mathbf{e}}_{x}, r=|z| \\
& \hat{\mathbf{E}}=-\hat{\mathbf{e}}_{x} \eta \frac{j I k d}{4 \pi|z|} e^{-j k|z|}
\end{aligned}
$$

This dipole has current $I=\hat{I}_{0}$ and length $d=d_{\text {eff }}$:

$$
\hat{\mathbf{E}}=-\hat{\mathbf{e}}_{x} \eta \frac{j \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi|z|} e^{-j k|z|}
$$

We also have a dipole in the $\hat{\mathbf{e}}_{y}$-direction. We use the same method: The z-axis: $\theta=\pi / 2, \phi= \pm \pi / 2$

$$
\hat{\mathbf{E}}=\eta \frac{j I k d}{4 \pi r} e^{-j k r} \hat{\mathbf{e}}_{\theta}
$$

Figure 8: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.)

On z-axis, $\hat{\mathbf{e}}_{\theta}=-\hat{\mathbf{e}}_{y}, r=|z|$

$$
\hat{\mathbf{E}}=-\eta \hat{\mathbf{e}}_{y} \frac{j I k d}{4 \pi|z|} e^{-j k|z|}
$$

This dipole has $I=j \hat{I}_{0}$ and $d=d_{\text {eff }}$.

$$
\hat{\mathbf{E}}=\eta \hat{\mathbf{e}}_{y} \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi|z|} e^{-j k|z|}
$$

Total field is given by superposition:

$$
\hat{\mathbf{E}}_{\text {total }}=\left(-j \hat{\mathbf{e}}_{x}+\hat{\mathbf{e}}_{y}\right) \eta \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi|z|} e^{-j k|z|}
$$

On the $+z$-axis, $z>0$

$$
\hat{\mathbf{E}}_{\text {total }}=\left(-j \hat{\mathbf{e}}_{x}+\hat{\mathbf{e}}_{y}\right) \eta \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z}
$$

B

Polarization: As time advances, how does the direction and amplitude of the electric field change? For this, we need to look at the real E-field, not just the complex amplitude:

$$
\begin{aligned}
& \hat{\mathbf{E}}=\operatorname{Re}\left\{\hat{\mathbf{E}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\left(-j \hat{\mathbf{e}}_{x}[\cos (\omega t-k z)+j \sin (\omega t-k z)]+\hat{\mathbf{e}}_{y}[\cos (\omega t-k z)+j \sin (\omega t-k z)]\right) \eta \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z}\right\} \\
& \hat{\mathbf{E}}=\left(\hat{\mathbf{e}}_{x} \sin (\omega t-k z)+\hat{\mathbf{e}}_{y} \cos (\omega t-k z)\right) \eta \frac{k I_{0} d_{\mathrm{eff}}}{4 \pi z}
\end{aligned}
$$

Let us look at one point in space, $z=z_{1}$, and see how the direction and magnitude of the E-field changes: Only the direction of the field changes as time advances; the magnitude remains the same. Thus, it is

$$
\begin{aligned}
\omega t-k z_{1}=0 & \rightarrow \hat{\mathbf{E}}=\hat{\mathbf{e}}_{y} \eta \frac{I_{0} k d_{\text {eff }}}{4 \pi z_{1}} \\
\omega t-k z_{1}=\frac{\pi}{2} & \rightarrow \hat{\mathbf{E}}=\hat{\mathbf{e}}_{x} \eta \frac{I_{0} k d \text { eff }}{4 \pi z_{1}}
\end{aligned}
$$

Figure 9: Time evolution of electric field. (Image by MIT OpenCourseWare.)
circularly polarized, since the field traces out a circle.
To determine whether the polarization is right-handed or left-handed, curl your fingers of both hands in the direction of the path traced out by the field. If your right thumb points in the direction of propagation ($+z$ in this case), then the field is right-handed. If your left thumb points in the direction of propagation, however, it is left-handed. In this case we have a left-handed circularly polarized wave.

C

Find the magnetic field:

$$
\begin{aligned}
& \nabla \times \mathbf{E}=-\mu \frac{\partial \mathbf{H}}{\partial t} \\
& \nabla \times \hat{\mathbf{E}}=-\mu j \omega \hat{\mathbf{H}} \\
& \left|\begin{array}{lll}
\hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{y} & \hat{\mathbf{e}}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \begin{array}{|c}
\frac{\partial}{\partial z} \\
E_{x}
\end{array} \\
E_{y} & E_{z}
\end{array}\right| \quad \hat{\mathbf{E}} \text { only varies with } z \Longrightarrow \text { only has } E_{x}, E_{y} \text { components } \\
& -\hat{\mathbf{e}}_{x} \frac{\partial \hat{E}_{y}}{\partial z}+\hat{\mathbf{e}}_{y} \frac{\partial \hat{E}_{x}}{\partial z}=-\mu j \omega \hat{\mathbf{H}}
\end{aligned}
$$

We assume that $1 / z$ varies much slower than $e^{-j k z}$, so we can treat $1 / z$ as a constant:

$$
\begin{aligned}
& \frac{\partial \hat{E}_{y}}{\partial z}=-j k \hat{E}_{y}, \quad \frac{\partial \hat{E}_{x}}{\partial z}=-j k \hat{E}_{x} \\
& -\hat{\mathbf{e}}_{x}(-j k) \eta \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z}+\hat{\mathbf{e}}_{y}(-j k)(-j) \eta \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z}=-\mu j \omega \hat{\mathbf{H}} \\
& \left(j \hat{\mathbf{e}}_{x}-\hat{\mathbf{e}}_{y}\right) \eta \frac{k^{2} \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z}=-\mu j \omega \hat{\mathbf{H}} \\
& \hat{\mathbf{H}}=\left(-\hat{\mathbf{e}}_{x}-j \hat{\mathbf{e}}_{y}\right) \eta \frac{k^{2} \hat{I}_{0} d_{\mathrm{eff}}}{\mu \omega 4 \pi z} e^{-j k z}=\left(-\hat{\mathbf{e}}_{x}-j \hat{\mathbf{e}}_{y}\right) \sqrt{\frac{\mu}{\varepsilon} \frac{\omega^{\downarrow} \mu \varepsilon \hat{I}_{0} d_{\mathrm{eff}}}{\mu \mu \delta 4 \pi z}} e^{-j k z} \\
& =-\left(\hat{\mathbf{e}}_{x}+j \hat{\mathbf{e}}_{y}\right) \frac{\omega \sqrt{\mu \varepsilon} \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z} \\
& =-\left(\hat{\mathbf{e}}_{x}+j \hat{\mathbf{e}}_{y}\right) \frac{k \hat{I}_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z}
\end{aligned}
$$

D

$$
\begin{aligned}
\langle\mathbf{S}\rangle & =\frac{1}{2} \operatorname{Re}\left\{\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\left(-j \hat{\mathbf{e}}_{x}+\hat{\mathbf{e}}_{y}\right) \eta \frac{k I_{0} d_{\mathrm{eff}}}{4 \pi z} e^{-j k z} \times\left(-\hat{\mathbf{e}}_{x}+j \hat{\mathbf{e}}_{y}\right) \frac{k I_{0} d_{\mathrm{eff}}}{4 \pi z} e^{j k z}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\left(\hat{\mathbf{e}}_{z}+\hat{\mathbf{e}}_{z}\right) \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi z}\right)^{2}\right\} \\
& =\hat{\mathbf{e}}_{z} \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi z}\right)^{2}
\end{aligned}
$$

Problem 11.5

A

Figure 10: Dipole configuration. (Image by MIT OpenCourseWare.)
In general:

$$
\begin{aligned}
& E_{\theta, \text { total }}=\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r_{1}} e^{-j k r_{1}}+\eta \frac{j k I_{0} e^{j \psi} d_{\mathrm{eff}}}{4 \pi r_{2}} e^{-j k r_{2}} \\
&=\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r} e^{j \psi / 2}\left(e^{-j \psi / 2} e^{j k \frac{a}{2} \sin \phi}+e^{j \psi / 2} e^{-j k \frac{a}{2} \sin \phi}\right) \\
&=\eta \frac{j k I_{0} d_{\mathrm{eff}}}{4 \pi r} e^{j \psi / 2} 2 \cos \left(k \frac{a}{2} \sin \phi-\frac{\psi}{2}\right) \\
&\langle\mathbf{S}\rangle= \hat{\mathbf{e}}_{r} \frac{1}{2} \frac{\left|\hat{E}_{\theta}\right|^{2}}{\eta}=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(k \frac{a}{2} \sin \phi-\frac{\psi}{2}\right) \\
& a=\lambda, k \frac{a}{2}=\frac{\not 2 \pi \not X}{\not X} \frac{X}{2}=\pi, \psi=0 \\
&\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}(\pi \sin \phi)
\end{aligned}
$$

Nulls:

$$
\begin{aligned}
\cos (\pi \sin \phi) & =0 \\
\not{X} \sin \phi & =(2 n-1) \frac{\mathscr{K}}{2}, n=0, \pm 1, \pm 2, \ldots \\
\sin \phi & =(2 n-1) \frac{1}{2}
\end{aligned}
$$

$$
n=1,0 \quad \sin \phi= \pm \frac{1}{2} \quad \phi= \pm 30^{\circ}, \pm 150^{\circ}
$$

Peaks:

$$
\begin{aligned}
& \cos ^{2}(\pi \sin \phi)=1 \\
& \mathcal{H}^{\prime} \sin \phi=m \neq, m=0, \pm 1, \pm 2, \ldots \\
& \sin \phi=m \\
& m=0 \quad \sin \phi=0 \quad \phi=0,180^{\circ} \\
& m= \pm 1 \quad \sin \phi= \pm 1 \quad \phi= \pm 90^{\circ}
\end{aligned}
$$

Figure 11: Plot of radiation pattern. (Image by MIT OpenCourseWare.)
B

Figure 12: Dipole configuration. (Image by MIT OpenCourseWare.)

$$
\begin{aligned}
I_{2} & =I_{1} e^{j \psi} \quad \psi=\frac{\pi}{2} \quad a=\frac{\lambda}{4} \\
\frac{k a}{2} & =\frac{\pi}{4} \\
\langle\mathbf{S}\rangle & =\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(\frac{\pi}{4} \sin \phi-\frac{\pi}{4}\right)
\end{aligned}
$$

Nulls:

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4} \sin \phi-\frac{\pi}{4}\right)=0 \\
& \frac{\pi}{4} \sin \phi-\frac{\mathbb{Z}}{4}=(2 m-1) \frac{\mathbb{K}}{2}, m=0, \pm 1, \pm 2, \ldots \\
& \sin \phi=4 m-1 \\
& m=0 \quad \sin \phi=-1 \quad \phi=-90^{\circ}
\end{aligned}
$$

Peaks:

$$
\begin{aligned}
\cos ^{2}\left(\frac{\pi}{4} \sin \phi-\frac{\pi}{4}\right) & =1 \\
\frac{\pi}{4} \sin \phi-\frac{\pi}{4} & =(2 m-1) \frac{\pi}{2}, m=0, \pm 1, \pm 2, \ldots \\
\sin \phi & =4 m+1 \\
n=0 \quad \sin \phi=1 \quad \phi & =90^{\circ}
\end{aligned}
$$

Figure 13: Plot of radiation pattern. (Image by MIT OpenCourseWare.)

C

Figure 14: Dipole configuration. (Image by MIT OpenCourseWare.)

$$
\hat{E}_{\theta}\left(r, \theta=\frac{\pi}{2}, \phi\right)=\frac{j k \eta d_{\mathrm{eff}}}{4 \pi r} \underbrace{\left[\sum_{-N}^{N} \hat{I}_{N} e^{j k n \frac{a}{2} \sin \phi}\right]}_{\text {array factor }} e^{-j k r}, \quad I_{2}=-I_{1}, I_{3}=I_{1}
$$

$$
\hat{E}_{\theta}\left(r, \theta=\frac{\pi}{2}, \phi\right)=\frac{j k \eta d_{\mathrm{eff}}}{4 \pi r} I_{0}\left[e^{j k \frac{a}{2} \sin \phi}-1+e^{-j k \frac{a}{2} \sin \phi}\right] e^{-j k r}
$$

$$
=\frac{j k \eta d_{\mathrm{eff}} I_{0}}{4 \pi r} e^{-j k r}\left[2 \cos \left(k \frac{a}{2} \sin \phi\right)-1\right]
$$

$$
\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2}\left[2 \cos \left(k \frac{a}{2} \sin \phi\right)-1\right]^{2}
$$

$$
a=2 \lambda, k \frac{a}{2}=\frac{2 \pi}{\not 2} \frac{\not 2 \lambda}{\not 2}=2 \pi
$$

$$
\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2}[2 \cos (2 \pi \sin \phi)-1]^{2}
$$

Nulls:

$$
\begin{aligned}
& 2 \cos (2 \pi \sin \phi)=1 \\
& \cos (2 \pi \sin \phi)=\frac{1}{2} \\
& 2 \pi \sin \phi= \pm \frac{\pi}{3}, \pm \frac{5 \pi}{3}, \pm \frac{7 \pi}{3}, \ldots \\
& \sin \phi\left.= \pm \frac{1}{6}, \pm \frac{5}{6}, \pm \frac{7}{6} \text { (larger than } 1\right) \\
& \phi= \pm 9.59^{\circ}, \pm 170.41^{\circ}, \pm 62.71^{\circ}, \pm 117.29^{\circ}
\end{aligned}
$$

Peaks:
Largest Peaks?

$$
\begin{aligned}
\cos (2 \pi \sin \phi) & =-1 \quad[2 \cos (2 \pi \sin \phi)-1]^{2}=9 \\
2 \pi \sin \phi & = \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots \\
\sin \phi & = \pm \frac{1}{2}, \pm \frac{\not 2}{2} \Longrightarrow \phi= \pm 30^{\circ}, \pm 150^{\circ}
\end{aligned}
$$

Smaller Peaks?

$$
\begin{aligned}
\cos (2 \pi \sin \phi) & =1 \quad[2 \cos (2 \pi \sin \phi)-1]^{2}=1 \\
2 \pi \sin \phi & =0, \pm 2 \pi, \ldots \\
\sin \phi & =0, \pm 1 \\
\phi=0^{\circ}, 180^{\circ}, \pm 90^{\circ} &
\end{aligned}
$$

What about $\cos (2 \pi \sin \phi)=0$? Though $[2 \cos (2 \pi \sin \phi)-1]^{2}=1$ as well, when $\cos (2 \pi \sin \phi)=0$, this is not a peak as can be seen by taking the second derivative with respect to ϕ and evaluating it at that point.

Figure 15: Plot of radiation pattern. (Image by MIT OpenCourseWare.)

Problem 11.6

A

Figure 16: Dipole configuration. (Image by MIT OpenCourseWare.)
Putting 2 identical dipoles $1 / 2$ a wavelength apart means they will cancel along the x-axis. But since neither is delayed with respect to each other, they add on the y-axis to a maximum.

$$
\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(\frac{\pi}{2} \cos \phi\right)
$$

B

Figure 17: Dipole configuration. (Image by MIT OpenCourseWare.)

This is the same pattern as in $11.3(\mathrm{~b})$, but rotated.

$$
\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(\frac{\pi}{4} \cos \phi-\frac{\pi}{4}\right)
$$

C
We need to come up with a maximum at $\phi=0$, but a minimum at $\phi=\pi$. We have 2 dipoles of equal amplitude, separated by a distance a.

$$
E=\eta \frac{j k I_{1} d_{\mathrm{eff}}}{4 \pi r} e^{j \psi / 2} e^{-j k r} 2 \cos \left(k \frac{a}{2} \cos \phi-\frac{\psi}{2}\right)
$$

Figure 18: Dipole configuration. (Image by MIT OpenCourseWare.)

$$
\phi=0 \Longrightarrow \text { must add to a peak }
$$

$$
\begin{aligned}
2 \cos \left(k \frac{a}{2}-\frac{\psi}{2}\right) & =2 \\
k \frac{a}{2}-\frac{\psi}{2} & =0, \pm 2 \pi, \pm 4 \pi, \ldots
\end{aligned}
$$

$\phi=\pi \Longrightarrow$ must be a null

$$
-k \frac{a}{\not 2}-\frac{\psi}{\not 2}= \pm \frac{\pi}{\not 2}, \pm \frac{3 \pi}{\not 2}, \ldots
$$

We want the solution with the fewest nulls and peaks, so let us take the lowest angles:

$$
\begin{aligned}
k a-\psi & =0 \\
+-k a-\psi & =\pi
\end{aligned} \Longrightarrow \begin{gathered}
\text { We need a positive } a, \text { so } \\
\psi=\frac{3 \pi}{2}=-\frac{\pi}{2} \\
k a-\frac{3 \pi}{2}=0 \\
-2 \psi
\end{gathered} \quad \Longrightarrow \quad \begin{gathered}
a=\frac{3 \pi}{2}\left(\frac{\lambda}{2 \pi}\right)=\frac{3 \lambda}{4}
\end{gathered}
$$

Figure 19: Dipole configuration. (Image by MIT OpenCourseWare.)

$$
\langle\mathbf{S}\rangle=\hat{\mathbf{e}}_{r} 2 \eta\left(\frac{k I_{0} d_{\mathrm{eff}}}{4 \pi r}\right)^{2} \cos ^{2}\left(\frac{3 \pi}{4} \cos \phi+\frac{\pi}{4}\right)
$$

