MIT OpenCourseWare
http://ocw.mit.edu
6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:
Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.013 Electromagnetics and Applications

Problem Set \#7
Issued: 10/25/05
Fall Term 2005
Due: 11/2/05
Suggested Reading Assignment: Sections 5.2, 10.6.4

## Problem 7.1

An unusual type of distributed system is formed by series capacitors and shunt inductors.

(a) What are the governing partial differential equations relating the voltage and current? Hint: Review Lecture 10, pp. 2-3 (Section I.C.)
(b) What is the dispersion relation between $\omega$ and $k$ for signals of the form $e^{j(\omega t-k z)}$ ?
(c) What are the group $(d \omega / d k)$ and phase velocities $(\omega / k)$ of the waves? Why are such systems called "backward wave"?
(d) A voltage $V_{0} \cos \omega t$ is applied at $z=-l$ with the $z=0$ end short circuited. What are the voltage and current distributions along the line?
(e) What are the resonant frequencies of the system?

Problem 8.5 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

## Problem 7.2

For the transmission line shown, the length of the line is $1 / 4$ wavelength $(\lambda / 4)$ at the driving frequency $\omega$ of the voltage source.

(a) Find the values of lumped reactive admittance $\mathrm{Y}=j B$ and non-zero source resistance $R_{s}$ that maximizes the power delivered by the source. (Hint: Do not use the Smith chart.)
(b) If the lumped reactive admittance $\mathrm{Y}=\mathrm{jB}$ is made from a short circuited transmission line of length $l$ and characteristic impedance $Z_{0}=50 \Omega$, what is $l$ in terms of wavelength $\lambda$, i.e., $l=a \lambda$, what is $a$ ?
(c) What is the time-average power dissipated in the load?
(d) The driving frequency of the voltage source is now doubled. What is the transmission line length in terms of wavelengths $\lambda$ at the frequency $2 \omega$ ? Repeat (a) to (c).

Adapted from Problem 8.19 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

## Problem 7.3

(a) Find the time-average power delivered by the source for the transmission line system shown below when the switch is open or closed. (Hint: Do not use the Smith chart.)

(b) For each switch position, what is the time average power dissipated in the load resistor $R_{L}$ ?

Adapted from Problem 8.20 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

## Problem 7.4

A 100-ohm TEM transmission line operating at frequency $f$ is terminated with a load consisting of a 100 -ohm resistor in series with an inductor having a reactance of 100 j , as illustrated. Additional details and values are shown in the figures.
a) In terms of the complex reflection coefficient $\underline{\Gamma}_{\mathrm{L}}$ of the load, what fraction $A$ of the power incident upon the load is reflected?
b) For this load what is the numerical value of the complex reflection coefficient $\underline{\Gamma}_{\mathrm{L}}=\mathrm{a}+\mathrm{jb}$ ?
c) At what fraction of a wavelength $\mathrm{q}=\mathrm{D} / \lambda$ (and in terms of $\beta$, see figure), is the distance D from the load of the first point where $\underline{Z}(\mathrm{z})$ is purely real?*
d) To match this load a quarter-wave transformer is inserted at the first point where $\underline{Z}(z)$ is purely real. In terms of $K$, what should be the characteristic impedance $\mathrm{Z}_{\mathrm{T}}$ of the quarterwave transformer (see figure)?
e) What is K ?
f) Find another set of values for $q, K$ and $Z_{T}$ that allow this


Image by MIT OpenCourseWare.

## The Complete Smith Chart <br> Black Magic Design



