MIT OpenCourseWare
http://ocw.mit.edu
6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:
Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.013 Formula Sheets attached.

Problem 1

A transmission line system incorporates two transmission lines with characteristic impedances of $Z_{01}=100 \Omega$ and $Z_{02}=50 \Omega$ as illustrated above. A voltage source is applied at the left end, $v(t)=100 \cos \left(\pi \times 10^{8} t\right)$. At this frequency, line 1 has length of $\frac{\lambda_{1}}{2}=1$ meter and line 2 has length of $\frac{\lambda_{2}}{4}=0.4$ meter , where λ_{1} and λ_{2} are the wavelengths along each respective transmission line. The two transmission lines are connected by a series reactance $j X_{s}$ and the end of line 2 is loaded by impedance $Z_{L}=50(1+j) \Omega$. The voltage source is connected to line 1 through a source resistance $R_{s}=50 \Omega$.
a) What are the speeds c_{1} and c_{2} of electromagnetic waves on each line?
b) It is desired that X_{s} be chosen so that the source current $i(t)=I_{0} \cos \left(\pi \times 10^{8} t\right)$ is in phase with the voltage source. What is X_{s} ?
c) For the value of X_{s} in part (b), what is the peak amplitude I_{0} of the source current $i(t)$? Note that the value of X_{s} itself is not needed to answer this question or part (d).

Problem 2

A parallel plate waveguide is to be designed so that only TEM modes can propagate in the frequency range $0<f<2 \mathrm{GHz}$. The dielectric between the plates has a relative dielectric constant of $\varepsilon_{r}=9$ and a magnetic permeability of free space μ_{0}.
a) What is the maximum allowed spacing $d_{\max }$ between the parallel plate waveguide plates?
b) If the plate spacing is 2.1 cm , and $f=10 \mathrm{GHz}$, what TE_{n} and TM_{n} modes will propagate?

Problem 3

A transmission line of length ℓ, characteristic impedance $Z_{0}=100 \Omega$, and one-way time of flight $T=\ell / C$ is connected at $z=0$ to a 100 volt DC battery through a series source resistance $R_{s}=100 \Omega$ and a switch. The $z=\ell$ end is loaded by a 300Ω resistor.
a) The switch at the $z=0$ end has been closed for a very long time so that the system is in the DC steady state. What are the values of the positive and negative traveling wave voltage amplitudes $V_{+}(z-c t)$ and $V_{-}(z+c t)$?

Part b, on the next page, to be handed in with your exam. Put your name at the top of the next page.

Name:

b) With the system in the DC steady state, the switch is suddenly opened at time $t=0$.
i) Plot the positive and negative traveling wave voltage amplitudes, $V_{+}(z-c t)$ and $V_{-}(z+c t)$, as a function of z at time $t=T / 2$.

ii) Plot the transmission line voltage $v(z, t)$ as a function of z at time $t=T / 2$.

Please tear out this page and hand in with your exam. Don't forget to put your name at the top of this page.

Cartesian Coordinates (x,y,z):

$$
\begin{aligned}
\nabla \Psi & =\hat{x} \frac{\partial \Psi}{\partial \mathrm{x}}+\hat{y} \frac{\partial \Psi}{\partial \mathrm{y}}+\hat{\mathrm{z}} \frac{\partial \Psi}{\partial \mathrm{z}} \\
\nabla \cdot \overline{\mathrm{~A}} & =\frac{\partial \mathrm{A}_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{A}_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{z}} \\
\nabla \times \overline{\mathrm{A}} & =\hat{x}\left(\frac{\partial \mathrm{~A}_{\mathrm{z}}}{\partial \mathrm{y}}-\frac{\partial \mathrm{A}_{\mathrm{y}}}{\partial \mathrm{z}}\right)+\hat{y}\left(\frac{\partial \mathrm{~A}_{\mathrm{x}}}{\partial \mathrm{z}}-\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{x}}\right)+\hat{\mathrm{z}}\left(\frac{\partial \mathrm{~A}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{A}_{\mathrm{x}}}{\partial \mathrm{y}}\right) \\
\nabla^{2} \Psi & =\frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}
\end{aligned}
$$

Cylindrical coordinates ($\mathbf{r}, \phi, \mathrm{z}$):

$$
\begin{aligned}
& \nabla \Psi=\hat{\mathrm{r}} \frac{\partial \Psi}{\partial \mathrm{r}}+\hat{\phi} \frac{1}{\mathrm{r}} \frac{\partial \Psi}{\partial \phi}+\hat{\mathrm{z}} \frac{\partial \Psi}{\partial \mathrm{z}} \\
& \nabla \cdot \overline{\mathrm{~A}}=\frac{1}{\mathrm{r}} \frac{\partial\left(\mathrm{r} \mathrm{~A}_{\mathrm{r}}\right)}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~A}_{\phi}}{\partial \phi}+\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{z}} \\
& \nabla \times \overline{\mathrm{A}}=\hat{\mathrm{r}}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~A}_{\mathrm{z}}}{\partial \phi}-\frac{\partial \mathrm{A}_{\phi}}{\partial \mathrm{z}}\right)+\hat{\phi}\left(\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \mathrm{z}}-\frac{\partial \mathrm{A}_{\mathrm{z}}}{\partial \mathrm{r}}\right)+\hat{\mathrm{z}} \frac{1}{\mathrm{r}}\left(\frac{\partial\left(\mathrm{rA}_{\phi}\right)}{\partial \mathrm{r}}-\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \phi}\right)=\frac{1}{\mathrm{r}} \operatorname{det}\left|\begin{array}{ccc}
\hat{\mathrm{r}} & \mathrm{r} \hat{\phi} & \hat{\mathrm{z}} \\
\partial / \partial \mathrm{r} & \partial / \partial \phi & \partial / \partial \mathrm{z} \\
\mathrm{~A}_{\mathrm{r}} & \mathrm{rA}_{\phi} & \mathrm{A}_{\mathrm{z}}
\end{array}\right| \\
& \nabla^{2} \Psi=\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \frac{\partial \Psi}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \Psi}{\partial \phi^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}
\end{aligned}
$$

Spherical coordinates ($\mathbf{r}, \boldsymbol{\theta}, \phi$):

$$
\begin{aligned}
\nabla \Psi & =\hat{r} \frac{\partial \Psi}{\partial \mathrm{r}}+\hat{\theta} \frac{1}{\mathrm{r}} \frac{\partial \Psi}{\partial \theta}+\hat{\phi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial \Psi}{\partial \phi} \\
\nabla \cdot \overline{\mathrm{~A}} & =\frac{1}{\mathrm{r}^{2}} \frac{\partial\left(\mathrm{r}^{2} \mathrm{~A}_{\mathrm{r}}\right)}{\partial \mathrm{r}}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial\left(\sin \theta \mathrm{~A}_{\theta}\right)}{\partial \theta}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{~A}_{\phi}}{\partial \phi} \\
\nabla \times \overline{\mathrm{A}} & =\hat{r} \frac{1}{\mathrm{r} \sin \theta}\left(\frac{\partial\left(\sin \theta \mathrm{~A}_{\phi}\right)}{\partial \theta}-\frac{\partial \mathrm{A}_{\theta}}{\partial \phi}\right)+\hat{\theta}\left(\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{~A}_{\mathrm{r}}}{\partial \phi}-\frac{1}{\mathrm{r}} \frac{\partial\left(\mathrm{rA}_{\phi}\right)}{\partial \mathrm{r}}\right)+\hat{\phi} \frac{1}{\mathrm{r}}\left(\frac{\partial\left(\mathrm{rA}_{\theta}\right)}{\partial \mathrm{r}}-\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial \theta}\right) \\
& =\frac{1}{\mathrm{r}^{2} \sin \theta} \operatorname{det}\left|\begin{array}{ccc}
\hat{\mathrm{r}} & \mathrm{r} \hat{\theta} & \mathrm{r} \sin \theta \hat{\phi} \\
\partial / \partial \mathrm{r} & \partial / \partial \theta & \partial / \partial \phi \\
\mathrm{A}_{\mathrm{r}} & \mathrm{rA} \mathrm{~A}_{\theta} & \mathrm{r} \sin \theta \mathrm{~A}_{\phi}
\end{array}\right| \\
\nabla^{2} \Psi & =\frac{1}{\mathrm{r}^{2} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \frac{\partial \Psi}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{\mathrm{r}^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}}
\end{aligned}
$$

Gauss' Divergence Theorem:

$$
\int_{\mathrm{V}} \nabla \cdot \overline{\mathrm{G}} \mathrm{dv}=\oint_{\mathrm{A}} \overline{\mathrm{G}} \bullet \hat{\wedge} \mathrm{da}
$$

Stokes’ Theorem:

$$
\int_{\mathrm{A}}(\nabla \times \overline{\mathrm{G}}) \cdot \hat{n} \mathrm{da}=\oint_{\mathrm{C}} \overline{\mathrm{G}} \cdot \mathrm{~d} \bar{\ell}
$$

Vector Algebra:

$$
\begin{aligned}
& \nabla=\hat{\mathrm{x}} \partial / \partial \mathrm{x}+\hat{\mathrm{y}} \partial / \partial \mathrm{y}+\hat{\mathrm{z}} \partial / \partial \mathrm{z} \\
& \overline{\mathrm{~A}} \bullet \overline{\mathrm{~B}}=\mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{X}}+\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{z}} \\
& \nabla \bullet(\nabla \times \overline{\mathrm{A}})=0 \\
& \nabla \times(\nabla \times \overline{\mathrm{A}})=\nabla(\nabla \bullet \overline{\mathrm{A}})-\nabla^{2} \overline{\mathrm{~A}}
\end{aligned}
$$

Basic Equations for Electromagnetics and Applications

Fundamentals
$\overline{\mathrm{f}}=\mathrm{q}\left(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \mu_{0} \overline{\mathrm{H}}\right)[\mathrm{N}]$
$\nabla \times \overline{\mathrm{E}}=-\partial \overline{\mathrm{B}} / \partial \mathrm{t}$
$\oint_{\mathrm{c}} \overline{\mathrm{E}} \bullet \mathrm{d} \overline{\mathrm{s}}=-\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \overline{\mathrm{a}}$
$\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\partial \overline{\mathrm{D}} / \partial \mathrm{t} \quad$
$\oint_{C} \bar{H} \bullet d \bar{s}=\int_{A} \bar{J} \bullet d \bar{a}+\frac{d}{d t} \int_{A} \bar{D} \bullet d \bar{a}$
$\nabla \bullet \overline{\mathrm{D}}=\rho \rightarrow \oint_{\mathrm{A}} \overline{\mathrm{D}} \bullet \mathrm{da}=\int_{\mathrm{V}} \rho \mathrm{dv}$
$\nabla \bullet \overline{\mathrm{B}}=0 \rightarrow \oint_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \overline{\mathrm{a}}=0$
$\nabla \bullet \overline{\mathrm{J}}=-\partial \rho / \partial \mathrm{t}$
$\overline{\mathrm{E}}=$ electric field $\left(\mathrm{Vm}^{-1}\right)$
$\overline{\mathrm{H}}=$ magnetic field $\left(\mathrm{Am}^{-1}\right)$
$\overline{\mathrm{D}}=$ electric displacement $\left(\mathrm{Cm}^{-2}\right)$
$\overline{\mathrm{B}}=$ magnetic flux density (T)
Tesla $(T)=$ Weber $\mathrm{m}^{-2}=10,000$ gauss
$\rho=$ charge density $\left(\mathrm{Cm}^{-3}\right)$
$\overline{\mathrm{J}}=$ current density $\left(\mathrm{Am}^{-2}\right)$
$\sigma=$ conductivity (Siemens m^{-1})
$\bar{J}_{\mathrm{s}}=$ surface current density $\left(\mathrm{Am}^{-1}\right)$
$\rho_{\mathrm{s}}=$ surface charge density $\left(\mathrm{Cm}^{-2}\right)$
$\varepsilon_{0} \approx 8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
$\mathrm{c}=\left(\varepsilon_{0} \mu_{0}\right)^{-0.5} \cong 3 \times 10^{8} \mathrm{~ms}^{-1}$
$\mathrm{e}=-1.60 \times 10^{-19} \mathrm{C}$
$\eta_{0} \cong 377$ ohms $=\left(\mu_{0} / \varepsilon_{0}\right)^{0.5}$
$\left(\nabla^{2}-\mu \varepsilon \partial^{2} / \partial \mathrm{t}^{2}\right) \overline{\mathrm{E}}=0$ [Wave Eqn.]
$\mathrm{E}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{+}(\mathrm{z}-\mathrm{ct})+\mathrm{E}_{(\mathrm{z}}(\mathrm{z} \mathrm{ct})=\operatorname{Re}\left\{\underline{E}_{y}(\mathrm{z}) \mathrm{e}^{\mathrm{j} \omega t}\right\}$
$H_{x}(z, t)=\eta_{o}{ }^{-1}\left[E_{+}(z-c t)-E .(z+c t)\right][o r(\omega t-k z)$ or $(t-z / c)]$
$\oint_{A}(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \bullet d \bar{a}+(\mathrm{d} / \mathrm{dt}) \int_{\mathrm{V}}\left(\varepsilon|\overline{\mathrm{E}}|^{2} / 2+\mu|\overline{\mathrm{H}}|^{2} / 2\right) \mathrm{dv}$
$=-\int_{\mathrm{V}} \overline{\mathrm{E}} \bullet \overline{\mathrm{J}} \mathrm{dv}$ (Poynting Theorem)
Media and Boundaries
$\overline{\mathrm{D}}=\varepsilon_{0} \overline{\mathrm{E}}+\overline{\mathrm{P}}$
$\nabla \bullet \overline{\mathrm{D}}=\rho_{\mathrm{f}}, \tau=\varepsilon / \sigma$
$\nabla \bullet \varepsilon_{0} \overline{\mathrm{E}}=\rho_{\mathrm{f}}+\rho_{\mathrm{p}}$
$\nabla \bullet \overline{\mathrm{P}}=-\rho_{\mathrm{p}}, \overline{\mathrm{J}}=\sigma \overline{\mathrm{E}}$
$\overline{\mathrm{B}}=\mu \overline{\mathrm{H}}=\mu_{o}(\overline{\mathrm{H}}+\overline{\mathrm{M}})$
$\varepsilon=\varepsilon_{0}\left(1-\omega_{\mathrm{p}}{ }^{2} / \omega^{2}\right), \omega_{\mathrm{p}}=\left(\mathrm{Ne}^{2} / \mathrm{m} \varepsilon_{0}\right)^{0.5}$ (Plasma)
$\varepsilon_{\text {eff }}=\varepsilon(1-\mathrm{j} \sigma / \omega \varepsilon)$
skin depth $\delta=(2 / \omega \mu \sigma)^{0.5}[\mathrm{~m}]$
$\overline{\mathrm{E}}_{1 / /}-\overline{\mathrm{E}}_{2 / /}=0$
$\overline{\mathrm{H}}_{1 / /}-\overline{\mathrm{H}}_{2 / /}=\overline{\mathrm{J}}_{\mathrm{s}} \times \mathrm{n}$
$B_{1 \perp}-B_{2 \Perp}=0$
$D_{1 \perp}-D_{2 \perp}=\rho_{s}$

$$
\longrightarrow 0=\text { if } \sigma=\infty
$$

Electromagnetic Waves

$$
\begin{aligned}
& \left(\nabla^{2}-\mu \varepsilon \partial^{2} / \partial t^{2}\right) \overline{\mathrm{E}}=0 \text { [Wave Eqn.] } \\
& \left(\nabla^{2}+\mathrm{k}^{2}\right) \underline{\overline{\mathrm{E}}}=0, \underline{\overline{\mathrm{E}}}=\overline{\underline{E}}_{0} \mathrm{e}^{-j \overline{\mathrm{k}} \cdot \overline{\mathrm{~F}}} \\
& \mathrm{k}=\omega(\mu \varepsilon)^{0.5}=\omega / \mathrm{c}=2 \pi / \lambda \\
& \mathrm{k}_{\mathrm{x}}{ }^{2}+\mathrm{k}_{\mathrm{y}}{ }^{2}+\mathrm{k}_{\mathrm{z}}{ }^{2}=\mathrm{k}_{0}{ }^{2}=\omega^{2} \mu \varepsilon \\
& \mathrm{v}_{\mathrm{p}}=\omega / \mathrm{k}, \mathrm{v}_{\mathrm{g}}=(\partial \mathrm{k} / \partial \omega)^{-1} \\
& \theta_{\mathrm{r}}=\theta_{\mathrm{i}} \\
& \sin \theta_{\mathrm{t}} / \sin \theta_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{t}}=\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{t}} \\
& \theta_{\mathrm{c}}=\sin ^{-1}\left(\mathrm{n}_{\mathrm{t}} / \mathrm{n}_{\mathrm{i}}\right) \\
& \theta_{\mathrm{B}}=\tan ^{-1}\left(\varepsilon_{\mathrm{t}} / \varepsilon_{\mathrm{i}}\right)^{0.5} \text { for TM } \\
& \theta>\theta_{\mathrm{c}} \Rightarrow \overline{\mathrm{E}}_{\mathrm{t}}=\overline{\mathrm{E}}_{\mathrm{i}} \mathrm{Te}^{+\alpha \mathrm{ax}-\mathrm{j} \mathrm{k}_{\mathrm{z}}} \\
& \overline{\mathrm{k}}=\overline{\mathrm{k}}{ }^{\prime}-\mathrm{j} \overline{\mathrm{k}} " \\
& \underline{\underline{\Gamma}}=\underline{\mathrm{T}}-1 \\
& \underline{T}_{\text {TE }}=2 /\left(1+\left[\eta_{\mathrm{i}} \cos \theta_{\mathrm{t}} / \eta_{\mathrm{t}} \cos \theta_{\mathrm{i}}\right]\right) \\
& \underline{T}_{\mathrm{TM}}=2 /\left(1+\left[\eta_{\mathrm{t}} \cos \theta_{\mathrm{t}} / \eta_{\mathrm{i}} \cos \theta_{\mathrm{i}}\right]\right)
\end{aligned}
$$

Transmission Lines

Time Domain

$$
\begin{aligned}
& \partial \mathrm{v}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{z}=-\mathrm{L} \partial \mathrm{i}(\mathrm{z}, \mathrm{t}) / \partial \mathrm{t} \\
& \partial \mathrm{i}(\mathrm{z}, \mathrm{t}) / \mathrm{z}=-\mathrm{C} \partial \mathrm{v} \mathrm{z}, \mathrm{t}) / \partial \mathrm{t} \\
& \partial^{2} \mathrm{v} / \partial \mathrm{z}^{2}=\mathrm{LC} \partial^{2} \mathrm{v} / \partial \mathrm{t}^{2} \\
& \mathrm{v}(\mathrm{z}, \mathrm{t})=\mathrm{V}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})+\mathrm{V}_{-}(\mathrm{t}+\mathrm{z} / \mathrm{c}) \\
& \mathrm{i}(\mathrm{z}, \mathrm{t})=\mathrm{Y}_{0}\left[\mathrm{~V}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})-\mathrm{V}_{-}(\mathrm{t}+\mathrm{z} / \mathrm{c})\right] \\
& \mathrm{c}=(\mathrm{LC})^{-0.5}=(\mu \varepsilon)^{-0.5} \\
& \mathrm{Z}_{\mathrm{o}}=\mathrm{Y}_{0}^{-1}=(\mathrm{L} / \mathrm{C})^{0.5} \\
& \Gamma_{\mathrm{L}}=\mathrm{V}^{2} / \mathrm{V}_{+}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{o}}\right)
\end{aligned}
$$

Frequency Domain

$$
\begin{aligned}
& \left(\mathrm{d}^{2} / \mathrm{dz}^{2}+\omega^{2} \mathrm{LC}\right) \underline{\mathrm{V}}(\mathrm{z})=0 \\
& \underline{\mathrm{~V}}(\mathrm{z})=\underline{\mathrm{V}}+\mathrm{e}^{-\mathrm{jkz}}+\underline{\mathrm{V}} \mathrm{e}^{+\mathrm{j} k \mathrm{z}} \\
& \underline{I}(z)=Y_{0}\left[\underline{V_{+}} e^{-\mathrm{e}^{j k z}}-\underline{\mathrm{V}} \mathrm{e}^{\mathrm{t} \mathrm{j} k}\right] \\
& \mathrm{k}=2 \pi / \lambda=\omega / \mathrm{c}=\omega(\mu \varepsilon)^{0.5} \\
& \underline{\mathrm{Z}}(\mathrm{z})=\underline{\mathrm{V}}(\mathrm{z}) / \underline{I}(\mathrm{z})=\mathrm{Z}_{0} \underline{\mathrm{Z}}_{\mathrm{n}}(\mathrm{z}) \\
& \underline{Z}_{n}(\mathrm{z})=[1+\underline{\Gamma}(\mathrm{z})] /[1-\underline{\Gamma}(\mathrm{z})]=\mathrm{R}_{\mathrm{n}}+\mathrm{j} \mathrm{X}_{\mathrm{n}} \\
& \underline{\Gamma}(\mathrm{z})=\left(\underline{\mathrm{V}}_{-} / \underline{\mathrm{V}}_{+}\right) \mathrm{e}^{2 \mathrm{jkz}}=\left[\underline{\mathrm{Z}}_{\mathrm{n}}(\mathrm{z})-1\right] /\left[\underline{\mathrm{Z}}_{\mathrm{n}}(\mathrm{z})+1\right] \\
& \underline{Z}(z)=Z_{o}\left(\underline{Z}_{\mathrm{L}}-j \mathrm{Z}_{\mathrm{o}} \tan \mathrm{kz}\right) /\left(\underline{\mathrm{Z}}_{\mathrm{o}}-\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \mathrm{kz}\right) \\
& \text { VSWR }=\left|\underline{\mathrm{V}}_{\text {max }}\right| / \underline{\mathrm{V}}_{\text {min }} \mid
\end{aligned}
$$

