MIT OpenCourseWare
http://ocw.mit.edu
6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:
Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

Problem 1

A transmission line system incorporates two transmission lines with characteristic impedances of $Z_{01}=100 \Omega$ and $Z_{02}=50 \Omega$ as illustrated above. A voltage source is applied at the left end, $v(t)=100 \cos \left(\pi \times 10^{8} t\right)$. At this frequency, line 1 has length of $\lambda_{1} / 2=1$ meter and line 2 has length of $\lambda_{2} / 4=0.4$ meter, where λ_{1} and λ_{2} are the wavelengths along each respective transmission line. The two transmission lines are connected by a series reactance $j X_{s}$, and the end of line 2 is loaded by impedance $Z_{L}=50(1+j) \Omega$. The voltage source is connected to line 1 through a source resistance $R_{s}=50 \Omega$.

A

Question: What are the speeds c_{1} and c_{2} of electromagnetic waves on each line?
Solution: Using the appropriate values of $f=50 \mathrm{MHz}, \lambda_{1}=2 \mathrm{~m}$, and $\lambda_{2}=1.6 \mathrm{~m}$ together with the expression $f \lambda=c$, we find that

$$
\begin{aligned}
& c_{1}=5 \times 10^{7}(2)=10^{8} \mathrm{~m} / \mathrm{s}, \text { and } \\
& c_{2}=5 \times 10^{7}(1.6)=8 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

B

Question: It is desired that X_{s} be chosen so that the source current $i(t)=I_{0} \cos \left(\pi \times 10^{8} t\right)$ is in phase with the voltage source. What is X_{s} ?

Solution: We have that

$$
\begin{aligned}
\frac{Z_{L}}{Z_{02}} & =1+j \\
Z_{n}\left(z=-\frac{\lambda_{2}}{4}\right) & =\frac{1}{1+j}=\frac{1-j}{2}, \text { and } \\
Z\left(z=-\frac{\lambda_{2}}{4}\right) & =25(1-j)
\end{aligned}
$$

However, $j X_{s}+25(1-j)$ must be real, hence $X_{s}=25 \Omega$.

C
Question: For the value of X_{s} in part B, what is the peak amplitude I_{0} of the source current $i(t)$?

Solution:

$$
Z\left(z=-\frac{\lambda_{2}}{4}\right)=25 \Omega \Longrightarrow Z\left(z=-\frac{\lambda_{2}}{4}-\frac{\lambda_{1}}{2}\right)=25 \Omega
$$

Hence,

$$
i(t)=\frac{v(t)}{75 \Omega}=\frac{4}{3} \cos \left(\pi \times 10^{8} t\right) \Longrightarrow I_{0}=\frac{4}{3} \text { Amperes. }
$$

Problem 2

A parallel plate waveguide is to be designed so that only TEM modes can propagate in the frequency range $0<f<2 \mathrm{GHz}$. The dielectric between the plates has a relative dielectric constant of $\varepsilon_{r}=9$ and a magnetic permeability of free space μ_{0}.

A

Question: What is the maximum allowed spacing $d_{\text {max }}$ between the parallel plate waveguide plates?

Solution:

$$
\omega_{c o, n}=\frac{n \pi c}{d}=2 \pi f_{c o, n} \Longrightarrow f_{c o, n}=\frac{n c}{2 d} \text { with } c=10^{8} \mathrm{~m} / \mathrm{s}
$$

The lowest cut-off frequency occurs when $n=1$, therefore

$$
f_{c o, 1}=\frac{c}{2 d}>2 \mathrm{GHz} \Longrightarrow d<\frac{c}{4 \times 10^{9}}=\frac{10^{8}}{4 \times 10^{9}}=\frac{1}{40} \mathrm{~m} .
$$

Hence $d<2.5 \mathrm{~cm}$.

B
Question: If the plate spacing is 2.1 cm , and $f=10 \mathrm{GHz}$, what $\mathbf{T E}_{n}$ and $\mathbf{T M}_{n}$ modes will propagate?

Solution:

$$
f_{c o, n}=\frac{n c}{2 d}<10 \mathrm{GHz} \Longrightarrow n<\frac{2 d\left(10^{10}\right)}{c}=\frac{2(0.021) 10^{10}}{10^{8}} \Longrightarrow n<4.2
$$

It follows then that we have the propagating modes: $\mathrm{TE}_{1}, \mathrm{TE}_{2}, \mathrm{TE}_{3}, \mathrm{TE}_{4}$; and $\mathrm{TM}_{1}, \mathrm{TM}_{2}, \mathrm{TM}_{3}, \mathrm{TM}_{4}$.

Problem 3

A transmission line of length l, characteristic impedance $Z_{0}=100 \Omega$, and one-way time of flight $T=l / c$ is connected at $z=0$ to a 100 volt DC battery through a series source resistance $R_{s}=100 \Omega$ and a switch. The $z=l$ end is loaded by a 300Ω resistor.

A

Question: The switch at the $z=0$ end has been closed for a very long time so that the system is in the DC steady state. What are the positive and negative traveling wave voltage amplitudes $V_{+}(z-c t)$ and $V_{-}(z+c t) ?$

Solution:

$$
\begin{aligned}
v(z, t) & =V_{+}+V_{-}=75 \text { Volts } \\
Z_{0} i(z, t) & =V_{+}-V_{-}=25 \text { Volts }
\end{aligned}
$$

Solving for V_{+}and V_{-}yields

$$
\begin{aligned}
& V_{+}=50 \text { Volts } \\
& V_{-}=25 \text { Volts. }
\end{aligned}
$$

B

Question: With the system in the DC steady state, the switch is suddenly opened at time $t=0$.
I. Plot the positive and negative traveling wave voltage amplitudes, $V_{+}(z-c t)$ and $V_{-}(z+c t)$, as a function of \mathbf{z} at time $t=T / 2$.

Solution:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{300-100}{300+100}=\frac{200}{400}=\frac{1}{2}, \Gamma_{s}=+1
$$

II. Plot the transmission line voltage $v(z, t)$ as a function of z at time $t=T / 2$.

Solution:

