MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.013 Electromagnetics and Applications

Quiz 1
Closed book, no calculators

Please note the formulas provided on a separate sheet. There are 4 problems on two pages. For full credit, please simplify all expressions, circle and dimension your answers, and present numerical answers to the extent practical without a calculator or tedious computation. You may leave natural constants in symbolic form ($\pi, \varepsilon_{0}, h, e$, etc.). You may keep the quiz questions.

Problem 1. (34/100 points)
A uniform plane wave in an unusual gaseous medium characterized by μ, ε is represented by:

$$
\overline{\mathrm{E}}=2 \hat{\mathrm{x}} \cos (\mathrm{t}+\mathrm{z}) \text { and } \overline{\mathrm{H}}=\hat{\mathrm{y}} \sin \left(\mathrm{t}+\mathrm{z}+\frac{\pi}{2}\right) .
$$

In each case below please briefly indicate your method, equations, or reasoning.
What are the numerical values for:
a) The wave velocity v and direction $[\mathrm{m} / \mathrm{s}]$?
b) The time average wave intensity I $\left[\mathrm{W} / \mathrm{m}^{2}\right]$?
c) The permeability $\mu[\mathrm{H} / \mathrm{m}]$ for this medium?
d) The pressure $P_{m}\left[\mathrm{~N} / \mathrm{m}^{2}\right]$ the wave exerts when normally incident $\left(\theta_{\mathrm{i}}=0\right)$ on a perfectly reflecting mirror?

Problem 2. (18/100 points)
A factory measures the velocity $\mathrm{v}_{\mathrm{m}}[\mathrm{m} / \mathrm{s}]$ of molten metal running down an insulating sluice of width W by measuring the voltage V across the width of the channel produced by the illustrated uniform vertical magnetic field B. What is the velocity $\overline{\mathrm{v}}_{\mathrm{m}}$ in terms of the other given parameters? Briefly explain your reasoning, including the direction of $\overline{\mathrm{v}}_{\mathrm{m}}$ (see illustration).

Please turn over for Problems 3 and 4

Problem 3. (20/100 points)
What constraints are imposed on ${ }^{-} \mathrm{H}_{/ /}$in free space at the flat surface of a medium having $\sigma=0$ and $\mu=\infty$? Briefly explain your reasoning.

Problem 4. (28/100 points)

The illustrated inductor consists of N turns of wire uniformly wound around a thin hollow toroid with a major diameter of D to produce an inductance of L [Henries]. The toroid crosssectional area is A, as illustrated, and you may neglect any fields outside the toroid.
a) What is H inside the toroid when the current through the coil is I Amperes?
b) What is the approximate inductance L of this inductor?
c) The core of this coil is now one-percent filled with many turns of iron wire having $\mu=$ $1000 \mu_{\mathrm{o}}$, as illustrated. What now is the inductance L?

toroid one percent

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

