| Depar<br>6          | tment of Electrical Engineering and Compute<br>.013 Electromagnetics and Applicati  | r Science<br><b>ons</b>     |
|---------------------|-------------------------------------------------------------------------------------|-----------------------------|
| Student Name        | :                                                                                   |                             |
| Final Exam          | Closed book, no calculators                                                         | May 18,                     |
| Please note the tw  | vo pages of formulas provided at the back;                                          | the laser and acc           |
| expressions have b  | peen revised slightly. There are 10 problems                                        | ; some are on the           |
| answers to the ext  | ent practical without a calculator or tedious                                       | computation. and            |
| your final answers  | within the boxes provided. You may leave                                            | e natural constants         |
| trigonometric func  | tions in symbolic form ( $\pi$ , $\varepsilon_o$ , $\mu_o$ , $\eta_o$ , $h$ , $e$ , | $sin(0.9), \sqrt{2}, etc.)$ |
| receive partial cre | edit, provide all related work on the same s                                        | heet of paper and           |
|                     |                                                                                     | 511                         |

# Problem 1. (25/200 points)

Two square capacitor plates in air have separation d, sides of length b, and charge  $\pm Q$  as illustrated. Fringing fields can be neglected.



 $C_a = \epsilon_o b^2/d$ 

a) What is the capacitance  $C_a$  of this device?

$$C_a = \epsilon_o A/d = \epsilon_o b^2/d$$

b) A perfectly conducting plate is introduced between the capacitor plates, leaving parallel gaps of width d/10 above and below itself. What now is the device capacitance C<sub>b</sub> when it is fully inserted?

$$C_b = C_a'/2 = \varepsilon_o b^2/2(d/10) = 5\varepsilon_o b^2/d$$

$$C_b = 5\epsilon_o b^2/d$$

c) What is the magnitude and direction of the force  $\overline{f}$  on the new plate of Part (b) as a function of the insertion distance L. Please express your answer as a function of the parameters given in the figure.  $\overline{f} = 2Q^2 d/\epsilon_0 b(b + 4L)^2$ 

$$C = \varepsilon_{o}[5bL/d + b(b - L)/d]$$
  
$$\overline{f} = -dW_{T}/dL = -dW_{T}/dC \ dC/dL$$
  
$$= -(Q^{2}/2C^{2}) \ dC/dL = (Q^{2}/2[\varepsilon_{o}b/d]^{2}[b + 4L]^{2})4\varepsilon_{o}b/d = 2Q^{2}d/\varepsilon_{o}b(b + 4L)^{2}$$

#### **Problem 2.** (20/200 points)

The plate separation of a lossless parallel-plate TEM line many wavelengths long (length  $D = 100.25\lambda$ ) very slowly increases from end A to end B, as illustrated. This increases the characteristic impedance of the line from  $Z_o$  at the input end A, to  $4Z_o$  at the output end B. This transition from A to B is so gradual that it produces no reflections. End B is terminated with a resistor of value  $4Z_o$ 



 a) What is the input impedance <u>Z</u><sub>A</sub> seen at end A? Explain briefly.

 $\underline{Z}_{A} = Z_{o} [\Omega]$ Explanation: Line is matched: no reflections.

b) If the sinusoidal (complex) input input voltage is  $\underline{V}_A$ , what is the output voltage  $\underline{V}_B$ ?

$$\begin{split} P_{in} &= P_{out} \text{ so } |\underline{V}_A|^2 / 2Z_o = |\underline{V}_B|^2 / 8Z_o \implies |\underline{V}_B| = 2|\underline{V}_A| \\ e^{-j\pi/2} &= -j \end{split}$$

**Problem 3.** (25/200 points)

At t = 0 a switch connects a voltage V to a passive air-filled short-circuited TEM line of length D and characteristic impedance  $Z_o$ , as illustrated. Please sketch and quantify dimension:

 $\begin{array}{c}
+ & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$ 

a) The line voltage v(z) at t = D/2c.



 $V_{\rm B} = -2iV_{\rm A}$  [V]

b) The current  $i_B(t)$  through the short circuit for 0 < t < 2D/c.



c) The current  $i_A(t)$  from the voltage source (z = 0) for 0 < t < 3D/c.



# Problem 4. (30/200 points)

A 100-ohm air-filled lossless TEM line is terminated with a 100-ohm resistor and a  $10^{-10}/2\pi$  Farad capacitor in series, as illustrated. It is driven at 100 MHz.

a) What fraction  $F = |\underline{\Gamma}_L|^2$  of the incident power is reflected from this load?

$$R = 100 \Omega$$

$$Z_{o} = 100 \Omega$$

$$C = 10^{-10}/2\pi [F]$$

$$F = 1/5$$

$$\underline{Z}_n = 0.01(100 + 1/(j2\pi 10^8 10^{-10}/2\pi) = 1 - j$$
  
$$\underline{\Gamma} = (\underline{Z}_n - 1)/(\underline{Z}_n + 1) = -j/(2 - j), \ |\underline{\Gamma}|^2 = F = (1/5^{0.5})^2 = 1/5$$

b) What is the minimum distance D(meters) from the load at which the line current  $|\underline{I}(z)|$  is maximum? You may express your answer in terms of the angle  $\beta$ (degrees) shown on the Smith Chart.



c) Can we match this load by adding another capacitor in series somewhere and, if so, at what distance D and with what value  $C_m$ ?

$$D_{min} = 3/8 + \beta/240 \ [m]$$

 $D_{min} = 1/8 + \beta \lambda / 720 = 3(1/8 + \beta / 720)$ 

$$\lambda=c/f=3{\times}10^8/10^8$$

Can we match? YES  $D = \frac{3}{4} + \frac{\beta}{120}$  [m]  $C_m = \frac{10^{-10}}{2\pi}$  **Problem 5.** (20/200 points)

A flat perfect conductor has a surface current in the xy plane at z = 0 of:

$$\overline{\underline{J}}_{s}=\ \hat{x}\ J_{o}e^{-jbx}\ \ [A/m].$$

- a) Approximately what is H in the xy plane at z = 0+?
- b) How might one easily induce this current sheet at frequency f [Hz] on the surface of a good conductor? Please be reasonably specific and quantitative (not absolute phase).



might: Reflect a TM wave incident from  $\phi = \pi$  and  $\theta =$  $\sin^{-1}$  (b $\lambda_0/2\pi$ ), where  $\lambda_0 < 2\pi/b$ and  $|H_v| = J_0/2$ .

#### **Problem 6.** (10/200 points)

A certain evansescent wave at angular frequency  $\omega$  in a slightly lossy medium has  $\underline{\overline{E}} = \hat{y} E_0 e^{\alpha(x-0.01z) - jbz}$ ; assume  $\mu = \mu_0$ . What is the distance D between phase fronts for this wave?  $D = 2\pi/b$ 

 $b = 2\pi/\lambda_z$ 

### **Problem 7.** (25/200 points)

A resonator is filled with a dielectric having  $\varepsilon = 4\varepsilon_0$  and has dimensions b, a, and d along the x, y, and z directions, respectively, where d > a > b.

a) What is the lowest resonant frequency  $f_{m,n,q}$  [Hz] for this resonator?

$$f_{mnp} = (c_{\epsilon}/2)[(m/a)^{2} + (n/b)^{2} + (p/d)^{2}]^{0.5} = c_{\epsilon}[(1/2a)^{2} + (1/2b)^{2}]^{0.5}$$
  
=  $c_{\epsilon}[(1/2a)^{2} + (1/2b)^{2}]^{0.5}/2$ 

b) What is the polarization of the electric vector E at the center of the resonator for this lowest frequency mode?

Polarization of E is:  $\hat{x}$  (linear)

b

 $\varepsilon = 4\varepsilon$ 

 $f_{m,n,q} = c_{\varepsilon} [(1/2a)^2 + (1/2b)^2]^{0.5}/2$ 

c) What is the Q of this resonance if the dielectric has a slight conductivity  $\sigma$ ? Hint: a ratio of integrals may suffice, so the integrals might not need to be computed.

$$Q = (\pi/\sigma\eta_o)(a^{-2} + d^{-2})$$

$$\begin{split} Q &= w_o W_T / P_d = 2\pi f_{101} \; [2 \int_V (\epsilon_o |\underline{E}|^2 / 4) dV] / [\int_V (\sigma |\underline{E}|^2 / 2) dV \\ &= 2\pi \epsilon_o f_{101} / \sigma = (\pi / \sigma \eta_o) (a^{-2} + d^{-2}) \end{split}$$

### **Problem 8.** (20/200 points)

A certain transmitter transmits  $P_T$  watts of circularly polarized radiation with antenna gain  $G_o$  (in circular polarization) toward an optimally oriented matched short-dipole receiving antenna (gain = 1.5) located a distance R away. The wavelength is  $\lambda$ .



a) In the absence of any obstacles or reflections, what power  $P_R$  is received?

 $P_{\rm R} = 0.75 P_{\rm T} G_{\rm o} (\lambda/4\pi R)^2$ 

$$P_R = (P_T G_o / 4\pi R^2) A_e, A_e = 0.5 \ 1.5\lambda^2 / 4\pi$$

b) A large metal fence is then erected half way between the transmitter and receiver, and perpendicular to the line of sight. Fortunately it has a round hole of area A centered on that line of sight. Assume the hole is sufficiently small that the electrical phase of the incident wave is constant over its entirety. What power is received now?

$$P_{R} = 0.75 P_{T} G_{o} (A/\pi R^{2})^{2} [W]$$

### Problem 9. (15/200 points)

An ideal lossless three-level laser has the illustrated energy level structure. Level 1 is  $\Delta$  Joules above the ground state, and Level 2 is  $3\Delta$  Joules above the ground state. All rates of spontaneous emission  $A_{ij}$  have the same finite value except for  $A_{21}$ , which is infinite.

- a) What should be the laser frequency  $f_L$  [Hz]?  $\Delta E = hf$
- b) What is this laser's maximum possible efficiency  $\eta = (\text{laser power})/(\text{pump power})?$

| $\eta = 1/3$ |  |
|--------------|--|
|--------------|--|

 $f_L [Hz] = \Delta/h$ 



## **Problem 10.** (10/200 points)

Two monopole (isotropic) acoustic antennas lying on the z axis are aligned in the z direction and separated by  $2\lambda$ , as illustrated. They are fed  $180^{\circ}$  out of phase. In what directions  $\theta$  does this acoustic array have maximum gain G( $\theta$ )? Simple expressions suffice. If more than one direction has the same maximum gain, please describe all such directions.

 $\theta = \pm \cos^{-1}(1/4)$  and  $\pm \cos^{-1}(3/4)$ 



MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.