## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

### 6.013 Electromagnetics and Applications

Quiz 1 Solutions

Problem 1. ( $34 / 100$ points)

$$
\overline{\mathrm{E}}=2 \hat{\mathrm{x}} \cos (\mathrm{t}+\mathrm{z}) \text { and } \overline{\mathrm{H}}=\hat{\mathrm{y}} \sin \left(\mathrm{t}+\mathrm{z}+\frac{\pi}{2}\right) .
$$

a) $\frac{\partial}{\partial \mathrm{t}}(\mathrm{t}+\mathrm{z})=0 \Rightarrow$ velocity $\mathrm{v}=\frac{\partial \mathrm{z}}{\partial \mathrm{t}}=-1[\mathrm{~m} / \mathrm{s}]$
b) Wave intensity $\mathrm{I}=\langle\overline{\mathrm{E}} \times \overline{\mathrm{H}}\rangle=\left\langle 2 \cos ^{2}(\mathrm{t})\right\rangle=1\left[\mathrm{~W} / \mathrm{m}^{2}\right]$
c) $\eta=\mathrm{E} / \mathrm{H}=2 . \quad \mu=\eta / \mathrm{v}=\sqrt{\mu / \varepsilon} \sqrt{\mu \varepsilon}=2 \times 1=2[\mathrm{H} / \mathrm{m}]$.
d) Pressure $\mathrm{P}_{\mathrm{m}}=\mathrm{W}_{\mathrm{m}}=\frac{1}{2} \mu\left\langle\mathrm{H}^{2}\right\rangle$ where $|\mathrm{H}|=2$ at $\mathrm{s}=\infty . \mathrm{P}_{\mathrm{m}}=\frac{1}{4} \mu 2^{2}=2\left[\mathrm{~N} / \mathrm{m}^{2}\right]$

Problem 2. (18/100 points)

$$
f_{\mathrm{e}}=-\mathrm{e}\left(\overline{\mathrm{E}}-\overline{\mathrm{v}}_{\mathrm{m}} \times \mu_{\mathrm{o}} \overline{\mathrm{H}}\right)=0 \Rightarrow \mathrm{E}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{m}} \mathrm{~B} . \text { But } \mathrm{V}=\mathrm{E}_{\mathrm{y}} \mathrm{~W} \Rightarrow \mathrm{f}_{\mathrm{m}}=-\hat{\mathrm{z}} \mathrm{E}_{\mathrm{y}} / \mathrm{B}=-\hat{\mathrm{z}} \mathrm{~V} / \mathrm{WB}
$$

Problem 3. (20/100 points)
$\overline{\mathrm{H}}_{/ /}$is continuous since $\sigma=0 \Rightarrow \overline{\mathrm{~J}}_{\mathrm{s}}=0$.
When $\mu=\infty$ and $\mu \mathrm{H}$ is finite (finite $\mathrm{W}_{\mathrm{m}}$ ), $\mathrm{H}=0$, so $\mathrm{H}_{/ /}=0$.

Problem 4. (28/100 points)
a) Ampere's Law: $\pi \mathrm{DH}=\mathrm{NI} \Rightarrow \mathrm{H}=\mathrm{NI} / \pi \mathrm{D}[\mathrm{A} / \mathrm{m}]$ (points counterclockwise)
b) $L=\Lambda / I . \quad \Lambda=N A \mu_{0} H . S o L=N A \mu_{0} N I / \pi D I=\mu_{0} N^{2} A / \pi D[H]$
c) $\mu \rightarrow 0.01 \times 1000 \mu_{\mathrm{o}}+0.99 \mu_{\mathrm{o}}=10.99 \mu_{\mathrm{o}} ; \mathrm{A} \rightarrow \mathrm{A} / 100$, so $\mathrm{L} \rightarrow \mathrm{L}^{\prime}=10.99 \mu_{\mathrm{o}} \mathrm{N}^{2} \mathrm{~A} / \pi \mathrm{D}[\mathrm{H}]$

MIT OpenCourseWare
http://ocw.mit.edu

### 6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

