MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.013 Electromagnetics and Applications - Quiz 2 Solutions

Problem 1. ($28 / 100$ points)
a) $\mathrm{R}_{\mathrm{Th}}=100$ ohms since there is no "glitch" at $\mathrm{t}=2 \tau$ and therefore no reflection at the source when the step returns at 2τ. Thus R_{Th} is matched to the line.
b) Line length $\mathrm{D}=\mathrm{c} \tau / 2$
c) An R and C in paralle at the end of the line produces this response; the C in parallel looks like a short circuit, yielding the zero at $\mathrm{t}=\tau$, and the R in parallel prevents the voltage V from returning to the source voltage $\mathrm{A}=2$ volts.

Problem 2. (22/100 points)
A certain parallel-plate TEM transmission line is filled with μ_{0} and $\varepsilon=9 \varepsilon_{0}$.
a) A 1-GHz signal on this TEM line has $\lambda=10 \mathrm{~cm}$ since $\lambda=\mathrm{v}_{\mathrm{p}} / \mathrm{f}=1 / 10^{9} \sqrt{\mu_{\mathrm{o}} 9 \varepsilon_{\mathrm{o}}}=0.1[\mathrm{~m}]$.
b) $\quad|\underline{\mathrm{V}}(\mathrm{z})|=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\alpha z} . \quad \mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \underline{\mathrm{k} z}}=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \omega \sqrt{\mu_{0} 9 \varepsilon_{\mathrm{o}}(1+0.01 \mathrm{j}) \mathrm{z}}}=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \frac{3 \omega}{\mathrm{c}} \sqrt{1+0.01 \mathrm{j} \mathrm{z}}}, \sqrt{1+0.01 \mathrm{j}}= \pm(1+0.005 \mathrm{j})$, but the "-" solution propagates in the wrong direction. Therefore we have $\mathrm{e}^{-\mathrm{j} \frac{3 \omega}{\mathrm{c}} \sqrt{1+0.01 \mathrm{j} ~} z}=\mathrm{e}^{-\mathrm{j} \frac{6 \pi 10^{9} \sqrt{8} \sqrt{1+0.01 \mathrm{j}} \mathrm{z}}{}}=\mathrm{e}^{-20 \mathrm{j} \pi(1+0.005 \mathrm{j}) \mathrm{z}}=\mathrm{e}^{-20 \mathrm{j} \pi(1+0.005 \mathrm{j}) \mathrm{z}} \Rightarrow \mathrm{e}^{0.1 \pi z}=\mathrm{e}^{-\alpha z}$

$$
\Rightarrow \alpha=-\pi / 10=-0.314\left[\mathrm{~m}^{-1}\right] \quad \text { Therefore this transmission line amplifies. }
$$

Problem 3. (22/100 points)
a) $\quad \overline{\mathrm{H}}=\hat{\mathrm{x}} \mathrm{H}_{\mathrm{e}} \mathrm{e}^{-\mathrm{jz}-0.6 \mathrm{y}}$ is a TM wave because H is $\perp \mathrm{z}$ axis, the axis of propagation.
b) $(\omega[\mathrm{r} / \mathrm{s}] / \mathrm{c})^{2}=\mathrm{k}_{\mathrm{o}}{ }^{2}=\mathrm{k}_{\mathrm{z}}{ }^{2}+\mathrm{k}_{\mathrm{y}}{ }^{2}=1^{2}+(0.6 \mathrm{j})^{2}=0.64$. So $0=0.8 \mathrm{c}=2.4 \times 10^{8}[\mathrm{r} / \mathrm{s}]$.

Problem 4. (28/100 points)
(a) Numerical value of the inductance $\mathrm{L}[\mathrm{Hy} / \mathrm{m}]$ on a line having $\mathrm{c}=3 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$ and $\mathrm{Z}_{\mathrm{o}}=100$ is $\mathrm{L}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \sqrt{\mathrm{LC}}=100 /\left(3 \times 10^{8}\right)=3.33 \times 10^{-7}[\mathrm{Hy} / \mathrm{m}]$
(b) $\quad|\underline{\Gamma}|=(\operatorname{VSWR}-1) /(\mathrm{VSWR}+1)=2 / 4$, so $\mathrm{F}=|\underline{\Gamma}|^{2}=1 / 4$.

(c) $\underline{Z}(\mathrm{z}=-3$ meters $)=$ real and minimum since $|\underline{\mathrm{V}}|=$ minimum. $\underline{\mathrm{Z}}_{\mathrm{n}}(\mathrm{z}=-3)=(1-|\underline{\Gamma}|) /(1+|\underline{\Gamma}|)$ $=1 / 3$, so $Z(z=-3)=100 / 3=33.3 \Omega$.

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

