

Your answers will be graded by actual human beings (at least that's what we believe!), so
don't limit your answers to machine-gradable responses. Some of the questions specifically
ask for explanations; regardless, it's always a good idea to provide a short explanation for
your answer. Before attempting the problems below, we encourage you to review Chapters 1
and 3, and solve the online practice problems on this material.

Problem 1: Information (2 points)

X is an unknown 8-bit binary number picked uniformly at random from the set of all possible
8-bit numbers. You are told the value of another 8-bit binary number, Y, and also told that X
and Y differ in exactly 4 bits. How many bits of information about X do you now know?
Explain your answer.

(points: 2)

Problem 2. Entropy when combining symbols. (1 point)

Suppose you are given a collection of N ≥ 1 symbols, the i symbol occuring with probability
pi, for 1 ≤ i ≤ N, with p1 + p2 + ... + pN = 1. This distribution has entropy H. Now suppose we
combine any two symbols, i and j, to a combined symbol with probability of occurrence pi +
pj. All the other symbol probabilities remain the same. Let the entropy of this new
distribution by H'. In general, is H' smaller than H, bigger than H, or the same as H, or is it not
possible to tell for sure? Prove your answer.

th

Problem Set 1

1

(points: 1)

Problem 3. Green Eggs and Hamming. (8 points)

By writing Green Eggs and Ham, Dr. Seuss won a $50 bet with his publisher because he used
only 50 distinct English words in the entire book of 778 words. The probabilities of
occurrence of the most common words in the book are given in the table below, in decreasing
order:

Rank Word Probability of occurrence of word in book
1 not 10.7%

2 I 9.1%

3 them 7.8%

4 a 7.6%

5 like 5.7%

6 in 5.1%

7 do 4.6%

8 you 4.4%

9--50 all other words 45.0%

I pick a secret word from the book. A.
The Bofa tells you that the secret word is one of the 8 most common words in the
book.
Yertle tells you it is not the word not.
The Zlock tells you it is three letters long.

How many bits of information about the secret word have you learned from:

1. The Bofa alone?
2. Yertle alone?
3. The Bofa and the Zlock together?
4. All of them together?

Express your answers in log2(100 / x) form, for suitable values of x in each case.

2

(points: 2)

B.	 The Lorax decides to compress Green Eggs and Ham using Huffman coding, treating
each word as a distinct symbol, ignoring spaces and punctuation marks. He finds that
the expected code length of the Huffman code is 4.92 bits. The average length of a
word in this book is 3.14 English letters. Assume that in uncompressed form, each
English letter requires 8 bits (ASCII encoding). Recall that the book has 778 total
words (and 50 distinct ones).

1.	 What is the uncompressed (ASCII-encoded) length of the book? Show your
calculations.

(points: 0.5)

2.	 What is the expected length of the Huffman-coded version of the book? Show
your calculations.

(points: 0.5)

3.	 The words "if" and "they" are the two least popular words in the book. In the
Huffman-coded format of the book, what is the Hamming distance between their
codewords?

(points: 0.5)

C.	 The Lorax now applies Huffman coding to all of Dr. Seuss's works. He treats each word
as a distinct symbol. There are n distinct words in all. Curiously, he finds that the most
popular word (symbol) is represented by the codeword 0 in the Huffman
encoding. Symbol i occurs with probability pi; p1 ≥ p2 ≥ p3 ... ≥ pn. Its length in the

3

Huffman code tree is Li.
1. Given the conditions above, is it True or False that p1 ≥ 1/3? Explain.

(points: 1)

2.	 The Grinch removes the most-popular symbol (whose probability is p1) and
implements Huffman coding over the remaining symbols, retaining the same
probabilities proportionally; i.e., the probability of symbol i (where i > 1) is now
pi / (1 - p1). What is the expected code length of the Grinch's code tree, in terms
of L, the expected code length of the original code tree, as well as p1? Explain.

(points: 1)

D.	 The Cat in the Hat compresses Green Eggs and Ham with the LZW compression
method described in 6.02 (codewords from 0 to 255 are initialized to the corresponding
ASCII characters, which includes all the letters of the alphabet and the space
character). The book begins with these lines:
I_am_Sam
I_am_Sam
Sam_I_am

We have replaced each space with an underscore (_) for clarity, and eliminated
punctuation marks.

1.	 What are the strings corresponding to codewords 256, 257, and 258 in the string
table?

(points: 0.5)

2.	 When compressed, the sequence of codewords starts with the codeword 73,
which is the ASCII value of the character "I". The initial few codewords in this
sequence will all be < 255, and then one codeword > 255 will appear. What
string does that codeword correspond to?

4

(points: 0.5)

3.	 Cat finds that codeword 700 corresponds to the string "I_do_not_l". This string
comes from the sentence "I_do_not_like_them_with_a_mouse" in the book.
What are the first two letters of the codeword numbered 701 in the string table?

(points: 1)

4.	 Thanks to a stuck keyboard (or because Cat is an ABBA fan), the phrase
"IdoIdoIdoIdoIdo" shows up at the input to the LZW compressor. The
decompressor gets a codeword, already in its string table, and finds that it
corresponds to the string "Ido". This codeword is followed immediately by a new
codeword not in its string table. What string should the decompressor return for
this new codeword?

(points: 0.5)

Problem 4. LZW compression. (2 points)

A.	 Suppose the sender adds two strings with corresponding codewords c1 and c2 in that
order to its string table. Then, it may transmit c2 for the first time before it transmits c1.
Explain whether this statement is True or False.

(points: 1)

B.	 Consider the LZW compression and decompression algorithms as described in 6.02.
Assume that the scheme has an initial table with code words 0 through 255
corresponding to the 8-bit ASCII characters; character ``a'' is 97 and ``b'' is 98. The

5

receiver gets the following sequence of code words, each of which is 10 bits long:

97 97 98 98 257 256=

What was the original message sent by the sender?

(points: 1)

Zip archive of all required files for the programming tasks on this PS. Extract using unzip.

You'll need to install numpy and matplotlib (they should be available on the lab machines).
Click here for instructions.

Python Task 1: Creating Huffman codes (3 points)

Useful download links:

PS1_tests.py -- test jigs for this assignment
PS1_1.py -- template file for this task

The process of creating a variable-length code starts with a list of message symbols and their
probabilities of occurrence. As described in the lecture notes, our goal is to encode more
probable symbols with shorter binary sequences, and less probable symbols with longer
binary sequences. The Huffman algorithm builds the binary tree representing the variable-
length code from the bottom up, starting with the least probable symbols.

Please complete the implementation of a Python function to build a Huffman code from a list
of probabilities and symbols:

encoding_dictionary = huffman(plist)=

Given plist, a sequence of tuples (prob,symbol), use the Huffman algorithm to
construct and return a dictionary that maps symbols to their corresponding Huffman
codes, which should be represented as lists of binary digits.

You will find it necessary to select the minimum element from pList. During the process, if
you need to select the minimum element from a pList, you can use built-in Python functions
such as sort() and sorted(). Python's heapq module is another alternative.

PS1_1.py is the template file for this problem.

The testing code in the template runs your code through several test cases. You should see
something like the following print-out (your encodings may be slightly different, although the
length of the encoding for each of the symbols should match that shown below):

6

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/assignments
http:PS1_1.py
http:PS1_1.py
http:PS1_tests.py

Huffman encoding:=
 B = 00=
 D = 01=
 A = 10=
 C = 11=
 Expected length of encoding a choice = 2.00 bits
 Information content in a choice = 2.00 bits
Huffman encoding:
 A = 00=
 D = 010=
 C = 011=
 B = 1=
 Expected length of encoding a choice = 1.66 bits
 Information content in a choice = 1.61 bits
Huffman encoding:
 II = 000
 I = 0010
 III = 0011
 X = 010
 XVI = 011
 VI = 1
 Expected length of encoding a choice = 2.38 bits
 Information content in a choice = 2.30 bits
Huffman encoding:
 HHH = 0=
 HHT = 100=
 HTH = 101=
 THH = 110=
 HTT = 11100=
 THT = 11101=
 TTH = 11110=
 TTT = 11111=
 Expected length of encoding a choice = 1.60 bits
 Information content in a choice = 1.41 bits=

When you're ready, please submit the file with your code using the field below.

File to upload for Task 1:

(points: 3)

Python Task 2: Decoding Huffman-encoded messages (5 points)

Useful download links:

PS1_2.py -- template file for this task

Encoding a message is a one-liner using the encoding dictionary returned by the huffman=
routine -- just use the dictionary to map each symbol in the message to its binary encoding
and then concatenate the individual encodings to get the encoded message:

def encode(encoding_dict,message):
 return numpy.concatenate([encoding_dict[obj]=

7

http:PS1_2.py

 for obj in message])=

Decoding, however, is a bit more work. Write a Python function to decode an encoded
message using the supplied encoding dictionary:

decoded_message = decode(encoding_dict,encoded_message)=

encoded_message is a numpy array of binary values, as returned by the encode=
function shown above (this array can be indexed just like a list). encoding_dict is a
dictionary mapping objects to lists of binary characters, as with the output of your
huffman function from task 1.

Your function should return (as a list) the sequence of symbols representing the
decoded message.

PS1_2.py is the template file for this problem:

When you're ready, please submit the file with your code using the field below.

File to upload for Task 2:

(points: 5)

Python Task 3: Huffman codes in practice -- fax transmissions (5 points)

Useful download links:

PS1_3.py -- Python file for this task
PS1_fax_image.png -- fax image

A fax machine scans the page to be transmitted, producing row after row of pixels. Here's
what our test text image looks like:

8

http:PS1_3.py
http:PS1_2.py

Instead of sending 1 bit per pixel, we can do a lot better if we think about transmitting the
image in chunks, observing that in each chunk we have alternating runs of white and black
pixels. What's your sense of the distribution of run lengths, for example when we arrange the
pixels in one long linear array? Does it differ between white and black runs?

Perhaps we can compress the image by using run-length encoding, where we send the
lengths of the alternating white and black runs, instead of sending the pixel pattern directly.
For example, consider the following representation of a 4x7 bit image (1=white, 0=black):

1 1 0 0 1 1 1=
1 1 1 0 0 1 1=
1 1 1 1 0 0 1=
1 1 1 1 1 1 1=

This bit image can be represented as a sequence of run lengths: [2,2,6,2,6,2,8]. If the receiver
knows that runs alternate between white and black (with the first run being white) and that
the width of the image is 7, it can easily reconstruct the original bit pattern.

It's not clear that it would take fewer bits to transmit the run lengths than to transmit the
original image pixel-by-pixel -- that'll depend on how clever we are when we encode the
lengths! If all run lengths are equally probable then a fixed-length encoding for the lengths
(e.g., using 8 bits to transmit lengths between 0 and 255) is the best we can do. But if some
run length values are more probable than others, we can use a variable-length Huffman code

9

to send the sequence of run lengths using fewer bits than can be achieved with a fixed-length
code.

PS1_3.py runs several encoding experiments, trying different approaches to using Huffman
encoding to get the greatest amount of compression. As is often the case with developing a
compression scheme, one needs to experiment in order to gain the necessary insights about
the most compressible representation of the message (in this case the text image).

Please run PS1_3.py, look at the output it generates, and then tackle the questions below.

Here are the alternative encodings we'll explore:

Baseline 0 -- Transmit the b/w pixels as individual bits
The raw image contains 250,000 black/white pixels (0 = black, 1 = white). We could
obviously transmit the image using 250,000 bits, so this is the baseline against which
we can measure the performance of all other encodings.

Baseline 1 -- Encode run lengths with fixed-length code
To explore run-length encoding, we've represented the image as a sequence of
alternating white and black runs, with a maximum run size of 255. If a particular run is
longer than 255, the conversion process outputs a run of length 255, followed by a run
of length 0 of the opposite color, and then works on encoding the remainder of the run.
Since each run length can be encoded in 8 bits, the total size of the fixed-length
encoding is 8 times the number of runs.

Baseline 2 -- Lempel-Ziv compressed PNG file
The original image is stored in a PNG-format file. PNG offers lossless compression
based on the Lempel-Ziv algorithm for adaptive variable-length encoding described in
Chapter 3. We'd expect this baseline to be very good since adaptive variable-length
coding is one of the most widely-used compression techniques.

Experiment 1 -- Huffman-encoding runs
As a first compression experiment, try using encoding run lengths using a Huffman
code based on the probability of each possible run length. The experiment prints the 10
most-probable run lengths and their probabilities.

Experiment 2 -- Huffman-encoding runs by color
In this experiment, we try using separate Huffman codes for white runs and black runs.
The experiment prints the 10 most-probable run lengths of each color.

Experiment 3 -- Huffman-encoding run pairs
Compression is always improved if you can take advantage of patterns in the message.
In our run-length encoded image, the simplest pattern is a white run of some length (the
space between characters) followed by a short black run (the black pixels of one row
of the character).

Experiment 4 -- Huffman-encoding 4x4 image blocks
In this experiment, the image is split into 4x4 pixel blocks and the sixteen pixels in each
block are taken to be a 16-bit binary number (i.e., a number in the range 0x0000 to

10

http:PS1_3.py
http:PS1_3.py

0xFFFF). A Huffman code is used to encode the sequence of 16-bit values. This
encoding considers the two-dimensional nature of the image, rather than thinking of all
the pixels as a linear array.

The questions below will ask you analyze the results. In each of the experiments, look closely
at the top 10 symbols and their probabilities. When you see a small number of symbols that
account for most of the message (i.e., their probabilities are high), that's when you'd expect to
get good compression from a Huffman code.

The questions below include the results of running PS1_3.py using a particular
implementation of huffman. Your results should be similar.

A.	 Baseline 1:'=
 total number of runs: 37712'
 bits to encode runs with fixed-length code: 301696'=

Since 301696 > 250000, using an 8-bit fixed-length code to encode the run lengths uses
more bits than encoding the image pixel-by-pixel. What does this tell you about the
distribution of run length values? Hint: what happens when runs are longer than 8 bits?

(points: 1)

B.	 Experiment 1:
 bits when Huffman-encoding runs: 111656
 Top 10 run lengths [probability]:
 1 [0.39]
 2 [0.19]
 3 [0.13]
 4 [0.12]
 5 [0.05]
 7 [0.03]
 6 [0.02]
 8 [0.01]
 0 [0.01]
 255 [0.01]=

How much compression did Huffman encoding achieve, expressed as the ratio of
unencoded size to encoded size (aka the compression ratio)? Briefly explain why the
Huffman code was able to achieve such good compression.

(points: .5)

11

http:PS1_3.py

Briefly explain why the probability of zero-length runs is roughly equal to the
probability of runs of length 255.

(points: .5)

C.	 Experiment 2:
 bits when Huffman-encoding runs by color: 95357
 Top 10 white run lengths [probability]:
 2 [0.25]
 4 [0.20]
 3 [0.19]
 5 [0.08]
 6 [0.05]
 7 [0.05]
 1 [0.04]
 8 [0.02]
 255 [0.02]
 10 [0.02]
 Top 10 black run lengths [probability]:
 1 [0.73]
 2 [0.13]
 3 [0.07]
 4 [0.03]
 0 [0.02]
 5 [0.01]
 7 [0.01]
 8 [0.00]
 9 [0.00]
 10 [0.00]=

Briefly explain why the compression ratio is better in Experiment 2 than in Experiment
1.

(points: 1)

D.	 Experiment 3:
 bits when Huffman-encoding run pairs: 87310
 Top 10 run-length pairs [probability]:
 (2, 1) [0.20]
 (4, 1) [0.15]
 (3, 1) [0.12]
 (5, 1) [0.07]
 (3, 2) [0.04]
 (7, 1) [0.03]
 (2, 2) [0.03]=

12

 (4, 2) [0.03]=
 (1, 1) [0.03]
 (6, 1) [0.03]=

Briefly explain why the compression ratio is better in Experiment 3 than in
Experiments 1 and 2.

(points: 1)

E.	 Experiment 4:
 bits when Huffman-encoding 4x4 image blocks: 71628
 Top 10 4x4 blocks [probability]:
 0xffff [0.55]
 0xbbbb [0.02]
 0xdddd [0.02]
 0xeeee [0.01]
 0x7777 [0.01]
 0x7fff [0.01]
 0xefff [0.01]
 0xfff7 [0.01]
 0xfffe [0.01]
 0x6666 [0.01]=

Using a Huffman code to encode 4x4 pixel blocks results in a better compression ratio
than achieved even by PNG encoding. Briefly explain why. [Note that the number of
bits reported for the Huffman-encoded 4x4 blocks does not include the cost of
transmitting the custom Huffman code to the receiver, so the comparison is not really
apples-to-apples. But ignore this for now -- one can still make a compelling argument
as to why block-based encoding works better than sequential pixel encoding in the case
of text images.]

(points: 1)

Python Task 4: LZW compression (7 points)

Useful download links:

PS1_lzw.py -- template file for this task

In this task, you will implement the compression and decompression methods using the LZW
algorithm, as presented in class and in Chapter 3. (We won't repeat the description here.) Our

13

http:PS1_lzw.py

goal is to compress an input file to a binary file of codewords, and uncompress binary files
(produced using compress) to retrieve the original file.

We will use a table size of 216 entries, i.e., each codeword is 16 bits long. The first 256 of
these, starting from 0000000000000000 to 0000000011111111 should be initialized to the
corresponding ASCII character; i.e., entry i should be initialized to chr(i) in Python for 0 ≤
i=≤ 255.

Your task is to write two functions: compress and uncompress:

compress(filename)

Takes a filename as input and creates an LZW-compressed file named filename.zl (i.e.,
append the string ".zl" to the input file name). The basic task is to correctly handle all

files that require no more than 216 codewords. If a file has more than this number, you
may take one of two actions:

terminate the program after printing the string "This file needs more than 2**16
entries" OR
Over-writing previously used table entries in compress() and uncompress=
(consistently), coming up with a design of your own. This part is optional and
will not be graded, so please don't feel compelled to work on it. But if you have
the time and inclination and want to design this part (so you can handle large
files, for instance), you are welcome to do it and demonstrate it during your
checkoff interview.

uncompress(filename)

Takes a filename as input and creates an uncompressed file named filename.u (i.e.,
append the string "u" to the input file name). For example, if the input file is test.zl,
your output file should be test.zl.u. If the file cannot be uncompressed successfully
because it contains an invalid codeword, then terminate the program (don't worry about
perfect error handling in this case; it's OK if the program terminates abruptly).

You can run the program as follows:

To compress: python PS1_lzw.py -f <filename>'
To uncompress: python PS1_lzw.py -f <filename> -u'=

You may find the following notes helpful for implementing these two functions in Python:

The main thing to keep in mind that the compressed file is a binary file; you can't just
write out strings corresponding to the codewords into the output file and expect that it
will reduce space. The 16-bit number 0001010101011010, for example, should be
stored in the file packed into two bytes, and not as a string of 16 characters (the latter
would take up 8 times as much space). So remember to open the output file as a binary
writeable file in compress() and remember to open the input file as a binary readable
file in uncompress().
If you aren't familiar with how to open, read, and write files, check out the Python
documentation on file I/O. For this task, code like the following should suffice:

 outname = 'myoutputfilename' # note: should be filename + '.zl'=

14

http://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files
http://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files
http:filename.zl

 f = open(filename, 'rb') # open file in read binary mode=
 data = f.read() # reads data from file f into a string
 outfile = open(outname, 'wb') # open file for binary writing =

To read and write binary data to/from files, you may find the array module useful. You
may also find the struct module useful, depending on how you write your code.
16-bit codewords means that you can think of each codeword as an unsigned short
integer in your Python code; the typecode format "H" for such data will be convenient
to use.
This is probably the simplest way of reading data into an array from a file :

When you are reading two bytes at a time ie when decompressing a file (a
compressed file is the input)

 =
 f = open(filename, 'rb')
 compressed = array.array("H", f.read())=
 =

When reading one byte at a time ie when compressing a file

 f = open(filename, 'rb')
 compressed = array.array("B", f.read())=
 =

Your task is to implement both the compress and uncompress functions according to
the method described in lecture and Chapter 3. To increase the likelihood that your
software meets the intended specification according to Chapter 3, we have provided
some test inputs and outputs, which you can download here (these only test the cases

when the number of codewords does not exceed 216). Each test file (a and rj) has a
corresponding .zl (a.zl and rj.zl) version. You may use these test files in debugging
your implementation (but note that working correctly on these tests does not
necessarily imply that your implementation is perfect). (We will use additional inputs to

test your code, but again not exceeding 216 codewords.)
As an added consistency check, please verify for some of your own test files that
running compress followed by uncompress produces the original file exactly (you can
use diff on Linux or Mac machines to see if two files differ; you can use diff on
Windows too if you install cygwin).

When you're ready, please submit the file with your code using the field below.

File to upload for LZW task:

(points: 7)

Questions for LZW task:

A.	 Download this zip archive and run unzip to extract three compressed (.zl) files, g.zl,
s.zl, and w.zl. For these files, run your program and enter the following information:

The ratio of the compressed file size to the original uncompressed version.
(Optionally (and only optionally), compare the effectiveness of your

15

http://docs.python.org/2/library/array.html
http://docs.python.org/2/library/struct.html
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/assignments

compression to the UNIX compress and gzip utilities, if you want to see how
close you get to these programs. Both programs are available on athena.)
The number of entries are in the string table (maintained by both compress and
uncompress). You can print the length of the table in uncompress to obtain this
information.

(points: .5)

B.	 Using your compress implementation, try compressing s.zl (from the zip archive)
even though it is already compressed. Does it further reduce the file size? Why or why
not?

(points: .5)

16

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

