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ual human beings (at least that s what we believe!), so 
don' t limit your answers to machine-gradable responses. Some of the questions specifically 
ask for explanations; regardless, it s always a good idea to provide a short explanation for 
your answer. 

Before doing this PSet, please read Chapters 7 and 8 of the readings. Also attempt the 
practice problems on this material. 

Due dates are as mentioned above. Checkoff interviews for PS2 and PS3 will be held 
together and will happen between October 4 and 8. 

Problem 1. 

Consider a convolutional code with three generators, and with state transition diagram shown 
below: 

A. Deduce the equations defining the three parity bits. 

(points: 1.5) 
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Problem Set 3

Your answers will be graded by act



B. What are the constraint length and code rate for this code? 

(points: 0.5) 

C.	 What sequence of bits would be transmitted for the message "1011"? Assume the 
transmitter starts in the state labeled "0". 

(points: 0.5) 

The Viterbi algorithm is used to decode a sequence of received parity bits, as shown in the 
following trellis diagram: 

D. Determine the path metrics for the last two columns of the trellis. 

(points: 0.5) 
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E. What is the most likely state of the transmitter after time 5? 

(points: 0.5) 

F.	 What is the most likely message sequence, as decoded using the trellis above? And how 
many bit errors have been detected for this most likely message? 

(points: 0.5) 

G. What is the free distance of this code? 

(points: 0.5) 

Problem 2. 

Let conv_encode(x) be the resulting bit-stream after encoding bit-string x with a 
convolutional code, C. Similarly, let conv_decode(y) be the result of decoding y to produce 
the maximum-likelihood estimate of the encoded message. Suppose we send a message M 
using code C over some channel. Let P = conv_encode(M) and let R be the result of sending 
P over the channel and digitizing the received samples at the receiver (i.e., R is another 
bit-stream). Suppose we use Viterbi decoding on R, knowing C, and find that the maximum- 
likelihood estimate of M is M . During the decoding, we find that the minimum path metric 
among all the states in the final stage of the trellis is D. Then, D is the Hamming distance 
between two quantities. What are the two quantities? Consider both the cases when the 
decoder corrects all the errors and when it does not. Explain your answer. (This question 
requires some careful thinking.) 

(points: 2) 
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Problem 3. 

A technique called puncturing can be used to obtain a convolutional code with a rate higher 
than 1/r, when r generators are used. The idea is to produce the r parity streams as before and 
then carefully omit sending some of the parity bits that are produced on one or more of the 
parity streams. One can express which bits are sent and which are not on each stream as a 
vector of 1' s and 0' s: for example, on a given stream, if the normal convolutional encoder 
produces 4 bits on a given parity stream, the vector (1 1 0 1) says that the first, second, and 
fourth of these bits are sent, but not the third, in the punctured code. 

A.	 Suppose we start with a rate-1/2 convolutional code without puncturing. The encoder 
then uses the vector (1 0) on the first parity stream and the vector (1 1) on the second 
one: that is, it sends the first parity bit but not the second on the first parity stream and 
every parity bit produced on the second one. What is the rate of the resulting 
convolutional code? 

(points: 0.5) 

B.	 When using a punctured code, missing parity bits don' t participate in the calculation of 
branch metrics. Consider the following trellis from a transmission using K 3, r 1/2 
convolutional code that experiences a single bit error: 

Here s the trellis for the same transmission using the punctured code from part (A) that 
experiences the same error: 
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Fill in the path metrics, remembering that with the punctured code from part (A) the 
branch metrics are calculated as follows: 

BM(-0,00)=0 BM(-0,01)=1 BM(-0,10)=0 BM(-0,11)=1
BM(-1,00)=1 BM(-1,01)=0 BM(-1,10)=1 BM(-1,11)=0 

where the missing incoming parity bit has been marked with a "-". Use a text 
representation of the matrix (a 2-D array of numbers) when typing in the answer. 

(points: 1) 

C. Did using the punctured code result in a different decoding of the message? 

(points: 0.5) 

Problem 4. 

Ben enters the 6.02 lecture hall just as the professor is erasing the convolutional coding with 
Viterbi decoding example he has worked out, and finds the trellis shown below with several 
of the numbers and bit strings erased (yeah, the professor is strangely obsessive about how he 
erases items!). 
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Your job is to help Ben piece together the missing information by answering the questions 
below. Provide a brief explanation. 

a.	 The constraint length of this convolutional code is         . 

(points: .25) 

b. The rate of this convolutional code is         . 

(points: .25) 

c.	 Assuming hard-decision Viterbi decoding, write the missing path metric numbers inside 
the boxes in the picture above. (Work carefully and check your work to avoid a 
cascade of errors!) 

(points: 1) 
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d. What is the received parity stream, which the professor has erased? Write your 
answer in order from left to right in the space below. 

(points: 1) 

e.	 What is the maximum-likelihood message returned by the Viterbi decoder, if we 
stopped the decoding process at the last stage in the picture shown? Explain your 
answer below. 

(points: 1) 

Problem 5. 

Dona Ferentes is debugging a Viterbi decoder for her client, The TD Company, which is 
building a wireless network to send gifts from mobile phones. She picks a rate-1/2 code with 
constraint length 4, no puncturing. Parity stream p0 has the generator g0 = 1110. Parity 
stream p1 has the generator g1 = 1xyz, but she needs your help determining x,y,z, as well as 
some other things about the code. In these questions, each state is labeled with the 
most-recent bit on the left and the least-recent bit on the right. 

These questions are about the state transitions and generators. 

a.	 From state 010, the possible next states are ___ and ___. 

(points: 0.25) 

b. From state 010, the possible predecessor states are ___ and ___. 
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(points: 0.25) 

c.	 Given the following facts, find g1, the generator for parity stream p1. g1 has the form 
1xyz, with the standard convention that the left-most bit of the generator multiplies the 
most-recent input bit. 

Starting at state 011, receiving a 0 produces p1 = 0.
Starting at state 110, receiving a 0 produces p1 = 1.
Starting at state 111, receiving a 1 produces p1 = 1. 

(points: 1) 

d.	 Dona has just completed the forward pass through the trellis and has figured out the 
path metrics for all the end states. Suppose the state with smallest path metric is 110. 
The traceback from this state looks as follows: 

000 ← 100 ← 010 ← 001 ← 100 ← 110 

What is the most likely transmitted message? Explain your answer, and if there is not 
enough information to produce a unique answer, say why. 

(points: 0.5) 

During the decoding process, Dona observes the voltage pair (0.9, 0.2) volts for the 
parity bits p0, p1, where the sender transmits 1.0 volts for a "1" and 0.0 volts for a "0". 
The threshold voltage at the decoder is 0.5 volts. In the portion of the trellis shown 
below, each edge shows the expected parity bits p0, p1. The number in each circle is 
the path metric of that state. 

e.	 With hard-decision decoding, give the branch metric near each edge and the path 
metric inside the circle. 
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(points: 0.5) 

f.	 Timmy Dan (founder of TD Corp.) suggests that Dona use soft-decision decoding using 
the squared Euclidean distance metric. Give the branch metric near each edge and the 
path metric inside the circle. 

(points: 0.5) 

Python Task 1: Viterbi decoder for convolutional codes using hard-decision decoding 

Useful download links: 

PS3_tests.py -- test jigs for this assignment 
PS3_viterbi.py -- template file for this task 

As explained in lecture and Chapter 7, a convolutional encoder is characterized by two 
parameters: a constraint length K and a set of r generator functions {G0, G1, ...Gr}. The 
encoder processes the message one bit at a time, generating a set of r parity bits {p0, p1,
...} by applying the generator functions to the current message bit, x[n], and K-1 of the 
previous message bits, x[n-1], x[n-2], ..., x[n-(K-1)]. The r parity bits are then 
transmitted and the encoder moves on to the next message bit. 

The operation of the encoder may be described as a state machine, as explained in Chapter 7. 
The generator functions corresponding to the parity equations can be described compactly by 
simply listing its K coefficients as a K-bit binary sequence, or even more compactly (for a 
human reader) if we construe the K-bit sequence as an integer, e.g., G0: 7, G1: 5, etc. Here, 
"7" stands for the generator "111" and "5" for the generator "101", which in turn work out to 
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x[n] + x[n-1] + x[n-2], and x[n] + x[n-2], respectively. We will use this integer 
representation in this task. 

As explained in Chapter 8, the Viterbi decoder works by determining a path metric PM[s,n]
for each state s and bit time n. Consider all possible encoder state sequences that cause the 
encoder to be in state s at time n. In hard-decision decoding, the most-likely state sequence is 
the one that produced the parity bit sequence nearest in Hamming distance to the sequence of 
received parity bits. Each increment in Hamming distance corresponds to a bit error. In this 
task, PM[s,n] records this smallest Hamming distance for each state at the specified time. 

The Viterbi algorithm computes PM[…,n] incrementally. Initially

 PM[s,0] = 0 if s == starting_state else ∞ 

The decoder uses the first set of r parity bits to compute PM[…,1] from PM[…,0]. Then, it 
uses the next set of r parity bits to compute PM[…,2] from PM[…,1]. It continues in this 
fashion until it has processed all the received parity bits. 

The ViterbiDecoder class contains a method decode, which does the following (inspect its 
source code for details): 

1.	 Initialize PM[…,0] as described above. 

2.	 Use the Viterbi algorithm to compute PM[…,n] from PM[…,n-1] and the next r parity 
bits; repeat until all received parity bits have been consumed. Call the last time point N. 

3.	 Identify the most-likely ending state of the encoder by finding the state s that has the 
mimimum value of PM[s,N]. 

4.	 Trace back along the most likely path from start state to s to build a list of' 
corresponding message bits, and return that list. 

In this task you will write the code for three methods of the ViterbiDecoder class, which 
are crucial in the steps described above. Once these methods are implemented, one can make 
an instance of the class, supplying K and the parity generator functions, and then use the 
instance to decode messages transmitted by the matching encoder. 

The decoder will operate on a sequence of received voltage samples; the choice of which 
sample to digitize to determine the message bit has already been made, so there s one voltage 
sample for each bit. The transmitter has sent a 0 Volt sample for a "0" and a 1 Volt sample for 
a "1", but those nominal voltages have been corrupted by additive Gaussian noise zero 
mean and non-zero variance. Assume that 0 s and 1 s appear with equal probability in the 
transmitted message. 

PS3_viterbi.py is the template file for this task. 

You need to write the following functions: 

number = branch_metric(self,expected,received) 

expected is an r-element list of the expected parity bits (or you can also think of them 
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as voltages given how we send bits down the channel). received is an r-element list of 
actual sampled voltages for the incoming parity bits (floats in the range [0,1]). In this 
task, we will do hard-decision decoding; that is, we will digitize the received voltages 
using a threshold of 0.5 volts to get bits, and then compute the Hamming distance 
between the expected sequence and the received sequences. That Hamming Distance 
will be our branch metric for hard-decision decoding. 

You may use PS3_tests.hamming(seq1,seq2), which computes the Hamming 
distance between two binary sequences. 

viterbi_step(self,n,received_voltages)

update self.PM[…,n] using the batch of r parity bits and self.PM[…,n-1] computed 
on the previous iteration. In addition to making an entry for self.PM[s,n] for each 
state s, keep track of the most-likely predecessor for each state in the 
self.Predecessor array. You' ll find the following instance variables and functions 
useful (please read the code we have provided to understand how to use them -- 
learning to read someone else s code is a useful life skill :-) 

self.predecessor_states 
self.expected_parity 
self.branch_metric()  

s = most_likely_state(self,n)

Identify the most-likely state of the encoder at time n by finding the state s that has the 
mimimum value of PM[s,n] If there are several states with the same minimum value, 
choose one arbitrarily. Return the state s. 

message = traceback(self,s,n)

Starting at state s at time n, use the self.Predecessor array to trace back through the 
trellis along the most-likely path, determining the corresponding message bit at each 
time step. Note that you' re tracing the path backwards through the trellis, so that you' ll 
be collecting the message bits in reverse order -- don' t forget to put them in the right 
order before returning the final decoded message at the result of this procedure. You 
can determine the message bit at each state along the most likely path from the state 
itself -- think about how the current message bit is incorporated into the state when the 
transmitter makes a transition in the state transition diagram. Be sure that your code 
will work for different values of self.K. Also, note that we are storing these states as 
integers (e.g. state ' 101'  is stored as 5); you may find the >> (right shift) operator, or the 
bin function useful in extracting specific bits from integers. 

The testing code at the end of the template tests your implementation on a few messages and 
reports whether the decoding was successful or not. Note that passing these tests does not 
guarantee that your code is correct, and your code may be graded on different test 
cases; you should make fairly certain that your code will work for arbitrary tests (i.e., 
not just the ones in the file) before submitting. 

File to upload for Task 1:  
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(points: 8) 

Here s the debugging printout generated when Alyssa P. Hacker ran her correctly written 
code for the (3, (7,6)) convolutional code:

 Final PM table :

 0 2 3 2 2 3 2
 inf inf 1 2 3 2 4
 inf 0 3 2 3 3 4
 inf inf 1 2 2 4 4

 Final Predecssor table :

 0 0 0 1 0 0 1
 0 2 2 3 3 3 2
 0 0 0 1 1 0 0 
0 3 2 3 2 2 2 

Each column shows the new column added to the PM and Predecessor matrices after each 
call to viterbi_step. The last column indicates that the most-likely final state is 0 and that 
there were two bit errors on the most-likely path leading to that state. 

A.	 Consider the most-likely path back through the trellis using the Predecessor matrix. At 
which processing steps did the decoder detect a transmission error? Call the transition 
from column 1 of the debugging printout to column 2 Step 1, from Column 2 to 3 Step 
2 and so on. 

(points: 0.5) 

Ben Bitdiddle ran Task #1 and found the following path metrics at the end for the four states: 

[ 6200.
6197.
 6199. 
6199.] 

B.	 What is the most likely ending state? And what can you say about the number of errors 
the decoder detected? Were they all corrected? 

(points: 0.5) 
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Here s the debugging output from running decoder tests with a 500000-bit message a K = 3' 
code with generators 7 (111) and 6 (110).

 **** ViterbiDecoder: K=3, rate=1/2 **** 
BER: without coding = 0.006200, with coding = 0.000218 
Trellis state at end of decoding: 
[ 6200. 
6197. 
 6199. 
 6199.]  

Please answer the following questions based on the above output for the K = 3 code: 

C.	 What was the most-likely final state of the transmitter? And what were the most-likely 
last two bits of the message? 

(points: 0.5) 

D.	 The test message used was 500,000 bits long. Since we re using a rate 1/2 
convolutional code, there were 1,000,000 parity bits transmitted over the channel. The 
BER "without coding" was calculated by comparing the transmitted bit stream that 
went into the noisy channel with the bit stream that came out of the noisy channel. 
How many transmission errors occurred? 

(points: 0.5) 

E.	 After passing the received parity bits through the decoder and calculating the 
most-likely transmitted message, the BER "with coding" was calculated by comparing 
the original message with the decoded message. In this example, the density of bit 
errors was high enough that the decoder was unable to find and correct all the 
transmission errors. How many uncorrected errors remained after the decoder did the 
best it could at correcting errors? 

(points: 0.5) 
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Here s the debugging output from running decoder tests with a 500000-bit message a K = 4' 
code with generators 0xD (1101) and 0xE (1110).

 **** ViterbiDecoder: K=4, rate=1/2 **** 
BER: without coding = 0.006200, with coding = 0.000022 
Trellis state at end of decoding: 
[ 6203. 
6204. 
 6205. 
 6200. 
 6203. 
 6202. 
 6203. 
 6202.]  

F.	 What was the most-likely final state of the transmitter? And what were the most-likely 
final three bits of the message? 

(points: 0.5) 

G.	 How many uncorrected errors remained after the decoder did the best it could at 
correcting errors? 

(points: 0.5) 

H.	 Consider a given message bit. How many transmitted (coded) bits are influenced by 
that message bit in both the K = 3 and K = 4 cases? 

(points: 0.5) 

Python Task 2: Soft-decision Viterbi decoding 

Useful download link: 

PS3_softviterbi.py -- template file for this task 
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Let 's change the branch metric to use soft decision decoding, as described in lecture and 
Chapter 8. The soft metric we 'll use is the square of the Euclidean distance between the 
received vector of dimension r, the number of parity bits produced per message bit, of 
voltage samples and the expected r-bit vector of parities. Just treat them like a pair of 
r-dimensional vectors and compute the squared distance. 

PS3_softviterbi.py is the template file for this task. 

Complete the branch_metric method for the SoftViterbiDecoder class. Note that other 
than changing the branch metric calculation, the hard-decision and soft-decision decoders are 
identical. The code we have provided runs a simple test of your implementation. It also tests 
whether the branch metrics are as expected. 

File to upload for Task 2:  

(points: 2) 
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