
Your answers will be graded by actual human beings (at least that's what we believe!), so
don't limit your answers to machine-gradable responses. Some of the questions specifically
ask for explanations; regardless, it's always a good idea to provide a short explanation for
your answer.

Before doing this PSet, please read Chapters 9 and 10 of the readings. Also attempt the noise
and LTI practice problems on this material.

Problem 1. What's the SNR?

Ben Bitdiddle is running a communication link between a sender and receiver, transmitting a
bit stream of equally likely "1"s and "0"s. His scheme uses a voltage of +sqrt(Es) to send
binary digit "1", and a voltage of either 0 or -sqrt(Es) to send binary digit "0", depending on
whether he uses on-off or bipolar signaling, respectively. Assume these voltage levels are
preserved at the receiver in the absence of noise. The receiver takes a single sample in each
bit slot, and uses a threshold halfway between the two nominal voltage levels for deciding
whether a received sample is "1" or "0". Assume the samples are perturbed by additive white
Gaussian noise (AWGN), with N0 denoting twice the noise variance.

In this problem you will help Ben evaluate the two schemes.

1

Problem Set 4

You may use the picture shown below, which plots the function 0.5*erfc(sqrt(x)) as a
function of x on the dB scale. You ought to be able to eyeball the result from the picture (a
very useful skill for an engineer; it's the fastest way to answer this question), and then
confirm that your answer is correct by typing in numerical formulas into WolframAlpha.

(Pic from http://www.tlc.polito.it/~gaudino/foundations/didactical_material/erfc_curves/)

We may not have been as clear as we should have been about the definition of SNR in
this problem. It turns out that there are many reasonable interpretations/definitions of
SNR in different settings.

On p.118 of the notes, in connection with bipolar communication, we refer to Es/N 0

as the SNR. The square root of this ratio is what appears in the erfc expression in Eq.
(9.9) for the bit error rate, BER.

What we intended in this problem was for you to figure out how the BER expression
changed in going from bipolar to on-off signaling. You should find that BER = 0.5
erfc(sqrt{something}) for on-off signaling. That "something" is what we were thinking
of as the effective SNR for on-off signaling.

A. What happens to the SNR when Ben goes from on-off to bipolar signaling?

(points: 1)
2

Courtesy of Roberto Gaudino. Used with permission.

http://www.tlc.polito.it/~gaudino/foundations/didactical_material/erfc_curves
http://www.wolframalpha.com/

B. Suppose we were operating at 2dB SNR with an on-off scheme. Read the graph to get
an approximate BER.

(points: 0.5)

C.	 Use the graph again to figure out what the BER is for bipolar signaling under the same
noise conditions as in part (B).

(points: 0.5)

D.	 Suppose in the on-off scheme considered in (B) we were to average 4 samples in each
bit slot before comparing to a threshold. The AWGN assumption guarantees that noise
samples are independent on each sample. What is the BER now?

(points: 2)

Problem 2. Attenuation

The cable television signal in your home is poor. The receiver in your home is connected to
the distribution point outside your home using two coaxial cables in series, as shown in the
picture below. The power of the cable signal at the distribution point is P. The power of the
signal at the receiver is R.

3

The first cable attenuates (i.e., reduces) the signal power by 7 dB. The second cable
attenuates the signal power by an additional 13 dB. Calculate P/R as a numeric ratio.

(points: 1)

Problem 3. Mininmum-error threshold detection for 4-level signaling

Ben Bitdiddle studies the bipolar signaling scheme from 6.02 and decides to extend it to a
4-level signaling scheme, which he calls Ben's Aggressive Signaling Scheme, or BASS™. In
BASS, the transmitter can send four possible signal levels, or voltages: (-3A, -A, +A, +3A)
where A is some positive value. To transmit bits, the sender's mapper maps consecutive pairs
of bits to a fixed voltage level that is held for some fixed interval of time, creating a symbol.
For example, we might map bits "00" to -3A, "01" to -A, "10" to +A, and "11" to +3A. Each
distinct pair of bits corresponds to a unique symbol. Call these symbols s_minus3, s_minus1,
s_plus1, and s_plus3. Each symbol has the same prior probability of being transmitted.

The symbols are transmitted over a channel that has no distortion but does have additive
noise, and are sampled at the receiver in the usual way. Assume the samples at the receiver
are perturbed from their ideal noise-free values by a zero-mean additive white Gaussian noise

(AWGN) process with noise intensity N0 = 2σ2, where 2σ2 the variance of the Gaussian noise
on each sample. In the time slot associated with each symbol, the BASS receiver digitizes a
selected voltage sample, r, and returns an estimate, s, of the transmitted symbol in that slot,
using the following intuitive digitizing rule (written in Python syntax):

def digitize(r):
if r < -2*A: s = s_minus3
 elif r < 0: s = s_minus1
 elif r < 2*A: s = s_plus1
else: s = s_plus3
return s

The figure below illustrates the detection strategy:

4

Conditional noise distributions P(s | r)

Ben wants to calculate the symbol error rate for BASS, i.e., the probability that the symbol
chosen by the receiver was different from the symbol transmitted. Note: we are not interested
in the bit error rate here. Help Ben calculate the symbol error rate by answering the following
questions.

A.	 Suppose the sender transmits symbol s_plus3. What is the conditional symbol error
rate given this information; i.e., what is P(symbol error | s_plus3 sent)? Express your
answer in terms of A, N0, and the erfc function defined as

(points: 1.5)

B.	 Now suppose the sender transmits symbol s_plus1. What is the conditional symbol
error rate given this information, in terms of A, N0, and the erfc function? The
conditional symbol error rates for the other two symbols don't need to be calculated
separately.

(points: 1.5)

C.	 The symbol error rate when the sender transmits symbol s_minus3 is the same as the
symbol error rate of which of these symbols?

i. s_minus1
ii.	 s_plus1
iii.	 s_plus3

5

erfc(z) = dx.
2
π√

∫
∞

z

e−x2

(points: 0.5)

D.	 The symbol error rate when the sender transmits symbol s_minus1 is the same as the
symbol error rate of which of these symbols?

i. s_minus3
ii.	 s_plus1
iii.	 s_plus3

(points: 0.5)

E.	 Combining your answers to the previous parts, what is the symbol error rate in terms of
A, N0, and the erfc function? Recall that all symbols are equally likely to be
transmitted.

(points: 2)

Problem 4. Averaging filter

In this problem set we will build a communication system using your computer's speakers and
microphone as transmitter and receiver, respectively. We will multiply the message sequence
with a high-frequency sine wave sequence (the carrier) at the transmitter in order to match
the transmitted wavelength with the characteristic length of your antenna (your speakers) and
thereby radiate power efficiently. The receiver will recover the message sequence by running
the received sequence through an averaging filter represented by the following difference
equation:

A.	 Show that the system is linear and time-invariant.

6

y[n] = (x[n − k] + x[n − k − 1] + ⋯ + x[n − k − m])
1

m + 1

(points: 1)

B. Find the unit-sample response of this system for k=2, m=5.

(points: 0.5)

C. Compute the output y[n] when k=2, m=5 and the input sample sequence is

u[n] is the unit-step function and it's defined as

(points: 0.5)

D. Compute the output y[n] when k=2, m=5 and the input sequence is

(points: 1)

Programming Tasks

PSets 4-6 will use the Audiocom communication system, which uses your computer's
speakers to transmit signals, and your computer's microphone to receive signals. In this lab,
we will be exploring the effect of noise in communication channels, and working with a

7

x[n] = 2u[n − 3] − 2u[n − 7].

u[n] = {1,
0,

n ≥ 0
n < 0

x[n] = 12 + sin ().
πn

3

particular demodulation scheme known as envelope detection.

Task 1: Audiocom

The first task is simply to familiarize yourself with the Audiocom system, and to use it to send
a text file from your speakers to your microphone.

Download Audiocom and unzip it. For PS4, there are two .pyc files: preamble.pyc and
demodulate_audiocom.pyc that you need to set to the appropriate pyc file depending on
whether you have Python 2.6 or 2.7. For example, if you have Python 2.7, symbolically link
preamble_27.pyc to preamble.pyc (or rename the former to the latter). Similarly for
demodulate_audiocom.pyc

The documentation for Audiocom is available at http://audiocom602.blogspot.com. This
document should be your starting point; it contains some useful tips for getting started and
simple debugging.

Once you have successfully sent some bits using the process described in section 3.1 of the
documentation, it might be fun to send a text file. We have included several test files
(conveniently located in the testfiles directory). Replacing the -S 1 and -n 100 options
with -f testfiles/A, for example, will attempt to send the text "Mens et manus" across
your audio channel. (Note that if you're using IDLE, command-line options won't work and
you have to specify the program's run-time parameters in config.py as explained in the
documentation.) If all goes well, you should see that text appear shortly after transmission.

Task 2: Bypass Channel

We will first implement part of our Bypass Channel, which we will expand in PSets 5 and 6.
This synthetic model of the communication channel will prove to be useful and informative
moving forward, primarily as a means of debugging various demodulation schemes. At the
very least, it will save us from having to listen to lots of long beeps during our initial
debugging stages.

As mentioned in lecture, we will model environmental noise as a zero-mean Gaussian random
variable. In the next section, we will try to convince ourselves that this is a decent model, but
for now, we will simply implement it.

The file bypass_channel.py provides a template class BypassChannel. Notice that its
__init__ method takes three arguments. For this lab, we will only need to consider the first
argument, noise; we will get to lag and h in future labs.

We will implement our synthetic channel by filling in the method xmit_and_recv, which
takes a list of samples we wish to transmit, and returns a list of samples modeling those we
would expect to receive, were we actually transmitting over the audio channel. For now, it
will suffice to add a sample from a zero-mean Gaussian distribution to each element in
tx_samples. The variable self.noise contains the desired variance of the noise.

Take each input sample in the numpy array, tx_samples and return a numpy array in which
each sample is replaced with the original value plus a Gaussian random variable with zero
mean and variance given by self.noise. You may find numpy.random useful (especially the

8

http://audiocom602.blogspot.com
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/assignments

normal function in that module).

Upload your bypass_channel.py:

(points: 4)

Task 3: Measuring Noise

In this section, we will look at the effect of noise on our communcation channel, and will also
try to convince ourselves that the Gaussian model of environmental noise is, in fact,
reasonable.

Throughout this task, you will be making use of our envelope demodulator (which you will
implement in the next task). This demodulator begins by "rectifying" the signal; that is, by
taking the absolute value of the received samples so that every value is positive. Then, we
replace each sample by a value representing the mean of the next few samples (specifically,
the mean over the next half-period of the carrier waveform). This averaging filter was
discussed in lecture. Given a carrier frequency and sampling rate, you can figure out easily
how many samples are in one period of the waveform, and divide that number by 2 (more on
this averaging in the next task).

We will start by taking a few measurements. First, let's try sending a bunch of 1's across the
channel, and recording the voltages we receive back. Let's start by running sendrecv.py
with the options -S 1 (send only 1's), -H (send a header), -g (display graphs), -n 500 (send
500 bits), -c 1000 (use a 1000 Hz carrier), and -o 1.0 (use a voltage of 1.0 to represent a
1). Some other options (such as -q, -i and -p) may be necessary for some machines. You
should have found acceptable values for these options in task 1; make sure to use those
values again here!

The bottom plot displayed by the -g option is a histogram of the demodulated samples.
Assuming that environmental noise is Gaussian, we should expect to see a roughly Gaussian-
shaped distribution over received samples.

Save and upload a graph that results from running this test:

1's plot

(points: 0)

What does your plot look like? In some cases, it might not look Gaussian, but look like two or
more Gaussians with different means added together. Why does that happen (hint: think
about what might happen if too few samples are being averaged together).

9

http:sendrecv.py

(points: 1.5)

We also made an assumption that environmental noise is not only Gaussian, but is additive as
well; that is, the effect noise has on a signal does not depend on the value being sent. Let's
test this by sending 1's at a lower voltage. Try all of the same options as above, but change -o
1.0 to -o 0.7. (You may also achieve this goal by reducing the transmission volume.)

Save and upload a graph that results from running this test:

1's plot: 0.7v

(points: 0)

Try running this a few times. Compare and contrast the plots you get from this test, versus the
plots you generated with -o 1.0:

(points: 1)

Let's now try sending 0's instead of 1's. Change -S 1 to -S 0 and run the test again.

Save and upload a graph that results from running this test:

0's plot

(points: 0)

Try running this a few times. Likely, you find that this graph does not look quite like a
Gaussian centered at 0, but rather looks more like a "half-Gaussian" whose left edge runs up
against 0. Explain why this is happening; what is different about the all-0's case, versus the
all-1's case? (Hint: think about what the rectification step in the demodulation does.)

10

(points: 1.5)

Task 4: Demodulation

In this task, we will implement the envelope detector demodulation scheme described above.
Changes for this section should be made in the template file demodulate.py. To run your
demodulator instead of the one we provided, change line 13 in receiver.py to:
import demodulate First, define a method avgfilter(samples_in, window). This
method should return a new numpy array x, each of whose elements x[i] is the average of
all values samples_in[i] to samples_in[i+window-1], inclusive. It makes sense to
separate this averaging step (which is a form of "low pass" filtering) out of our envelope
demodulator, because we will use it in other demodulators as well (in later labs).

x should have the same length as samples_in. Note that this means that values near the end
of x will not be the average of window samples (we would run off the end of the list if we
tried to do that); in this case, x[i] should be the average of all values from i to the end of
samples_in.

Test your avgfilter function on multiple inputs. Here is the output of one test:

>>> avgfilter([1,1,2,3,5,8,13,21], 3)
array([1.33333333, 2. , 3.33333333, 5.33333333,

8.66666667, 14. , 17. , 21.])

Once your avgfilter method is working, move on to implementing the actual demodulator,
which should now be a straightforward application of absolute value and the averaging filter
you just wrote.

One question remains, though: what window size should we use during demodulation? Try
playing around with a few different values, and see how this affects the shape of the
"demodulated samples" plot.

For "low-enough" carrier frequencies, a good value to use for the window size is the number
of samples in one-half of the carrier waveform's period. Change your demodulator to use
this window size. You can calculate this value easily from the sampling rate and the carrier
frequency of the waveform.

Submit your code for the demodulator below.

Upload your demodulate.py:

(points: 4)

As an extra challenge, try to think for yourself why this window size might begin to fail as
we move to higher and higher carrier frequencies, and how we might go about improving its
performance at these higher frequencies.

11

http:receiver.py
http:demodulate.py

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

