
Your  answers  will  be graded by actual human beings (at least that's what we  believe!), so 
don't  limit your answers  to machine-gradable responses. Some of the  questions  specifically 
ask for explanations; regardless, it's  always a good idea to provide a short explanation for 
your answer. 

 
Before doing  this problem set, please read chapters  13 and  14 of the lecture notes. 

Nota bene: This  problem set is longer  than  usual, but  you have  two weeks to complete it. 
Please start early; don't wait  until the day before. The  programming is  more involved  than  in 
the previous  two PSets  (though it's not  onerous). The non-programming problems  also require 
more time and  attention. 

Problem 1 - Properties of the DTFT. (2 points) 

Given the discrete-time Fourier transform pair  x[n] ⟺  X(Ω)  find the DTFT  (discrete-time 
Fourier transform) or inverse DTFT (as  appropriate): 

A. x[n − ]n0  (this  is called the time-shift property). 

(points: 0.5) 
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B. X(Ω − Ω0)  (this is called the frequency-shift property). 

(points: 0.5) 

C. (−1)nx[n]. 

(points: 1) 

D. nx[n]. 

(points: 1) 

Problem 2 - Spectral content of DT signals. (1 point) 

Calculate the DTFT of 

x[n] =  u[n](−0.5)n 

directly from the definition of the transform. Is the signal content concentrated at low, 
mid-range, or high frequencies? 

(points: 1) 

Problem 3. (1 point) 

Suppose the continuous-time signal x(t)  is sampled regularly every T  seconds, yielding the 
discrete-time signal x[n] =  x(nT). 

A. What is the sampling rate fs  (in samples/sec) expressed in terms of T? 
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(points: 0.5) 

B.	 If x(t) =  cos  (2π t), so  is the frequency of the cosine in Hz, then the sampled f0 f0 
sequence x[n] is also a cosine, of some angular frequency Ω0  radians/sample, and 
x[n] =  cos  (  Ω0 n). Express Ω0  in terms of fs and f0 . Also determine what f0  is when 
Ω0 = π. 

(points: 0.5) 

Problem 4 - Kill the vuvuzela. (5 points) 

If you watched any match of the 2010 World Cup in South Africa, you are intimately 
acquainted with the vuvuzela, a plastic trumpet that produces a low, obnoxious droning right 
around f0 = 235  Hz. In this problem we'll design a digital audio filter that kills off sinusoids 
around 235 Hz but allows other sounds to pass through. Next time you watch a recording of a 
soccer game, you can use this filter to spare yourself a headache. 

A.	 First, we'll need to convert an analog audio signal x(t) into a digital signal x[n]  as  
follows:  

x[n] =  x(nT) 

where T  is the sampling interval, i.e., the interval between samples. 

Television audio is recorded at a sampling frequency of fs = 48   kHz. What angular 
frequency Ω (in radians/sample) corresponds to f0 = 235  Hz? 

(points: 0.5) 

B.	 Consider an LTI low-pass filter (LPF) with frequency response 

−30jΩe , |Ω| < ΩcH(Ω) = { 0, elsewhere, 

where you are able to specify the cutoff frequency Ωc. Denote the associated unit  
sample response by h[n].  

Calculate  h[n] for Ωc = π/4.  
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(points: 0.5) 

C.	 Determine the magnitude and phase of the frequency response G(Ω)  associated with an 
LTI filter whose unit sample response is 

g[n] =  δ[n − 30] − h[n] 

with h[n]  as in part (B), and with Ωc  at some arbitrary value between 0 and π. (It turns 
out to be simple to obtain such a filter, once one has a filter with the specifications in 
part (B)). Specify whether this is a low-pass filter, band-pass filter or high-pass filter. 

(points: 1) 

D.	 Determine the unit sample response f [n]  of a digital band-stop filter that knocks out 
components corresponding to frequencies between 230 and 240 Hz from 
continuous-time signals sampled at 48 kHz. You can do this by combining the filters 
from parts B and C, with appropriately chosen cutoff frequencies for each filter. 

(points: 2) 

E.	 Is your filter usable in real time? Explain. 

(points: 0.5) 

F.	 Watch a demo of this filter at work. The filtering scheme shown is slightly more 
complex than what you have worked out for two reasons: 

First, it suppresses sounds around both 235 and 470 Hz. The former is termed the 
fundamental frequency; the latter is termed the second-order harmonic frequency of 
the instrument. We can think of the vuvzela itself as a filter with strong frequency 
response at these two frequencies. This is why an effective vuvuzela-stopping filter 
must eliminate sounds in the neighborhoods of 235 and 470 Hz. 

Secondly, the demo you saw used a cascade of non-ideal filters with two band-stops at 
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each of the offending frequencies. What is the advantage of chaining two identical 
band-stop filters in series? 

(points: 0.5) 

Problem 5. (3 points) 

The Boston news radio station WEEI 850AM broadcasts on a carrier frequency of 850 kHz. 
Suppose its continuous-time (CT) carrier signal is sin (2π(850 × 103)t),where t  is measured in 
seconds. Denote the CT audio signal that's modulated onto this carrier by x(t), so that the CT 
signal transmitted by the radio station is 

q(t) =  x(t) sin  (2π(850 × 103)t) 

We use the symbols q[n]  and x[n] to denote the discrete-time (DT) signals that would have 
been obtained by respectively sampling q(t)  and x(t)  in the equation above at fs 
samples/second; more specifically, the signals are sampled at the discrete time instants 
t = n(1/ ). Thus fs 

q[n] =  x[n] sin  (  Ωcn) 

for an appropriately chosen value of the angular frequency Ωc. Take fs = 4 ×  106 

samples/second, corresponding to a sampling frequency of 4 MHz. 

A.	 Determine the value (in radians/sample) of Ωc  in the equation for q[n] above,  
restricting your answer to a value in the range [−π, π].
 

(points: .5) 

B.	 Determine the range of Ω  for which the DTFT of x[n] can be nonzero, assuming the 
Federal Communications Commision (FCC) insists that the transmitted signal be 
confined to a frequency band of 5 khz on either side of the 850 khz carrier, i.e., to the 
range from 845 khz to 855 khz. (Explain your reasoning briefly.) 

(points: .5) 
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Assume now that the receiver detects the CT signal 

r(t) =  10−3 q(t − ),  t0 

where t0 = 10−5  seconds, and that it samples this signal at fs  samples/second, thereby 
obtaining the DT signal 

r[n] =  10−3 q[n − m] =  10−3 x[n − m] sin  (  ωc(n − m)),
 

for an appropriately chosen integer m.  

C.	 Determine the value of m in the equation for r[n] above, explaining your answer. 

(points: 0.5) 

D.	 Noting your answer from part (B), determine for precisely which intervals of the Ω 
frequency axis the DTFT of the signal q[n − m]  in the equation for r[n]  above is 
nonzero. (Explain your reasoning briefly.) 

(points: 1) 

E.	 The demodulation step to obtain the DT signal x[n − m] from the received signal r[n]  in 
the equation for r[n]  above now involves multiplying r[n] by a DT carrier-frequency 
signal, followed by appropriate low-pass filtering. Which one of the following six 
carrier-frequency signals would you choose to multiply the received signal by? Give a 
brief explanation. 

a.	 cos ( Ωcn) 
b.	 cos ( Ωc(n − m)) 
c.	 cos ( Ωc(n + m)) 
d.	 sin ( Ωcn) 
e.	 sin ( Ωc(n − m)) 
f.	 sin ( Ωc(n + m)) 

(points: 0.5) 

Python Programming Tasks and Experiments 

Sharing is Caring: Frequency-division Multiplexing for Audiocom 
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Download Audiocom and unzip it in your working directory. 

Reminder: The documentation for Audiocom is available at 
http://audiocom602.blogspot.com. 

Our goal is to develop modules in the Audiocom system to transmit and correctly receive 
multiple concurrent transmissions over the audio medium. There are three challenges that we 
will overcome in the following tasks: 

1.	 Noise and inter-symbol interference (ISI): We have dealt with these issues in the 
previous two problem sets. We will use eye diagrams to manually tune the system and 
pick an appropriate value for the number of samples per bit (see Task 0 below). 

2.	 Delay (lag): The use of a preamble to begin each packet transmission and the 
development of a robust method to detect a preamble in the presence of noise and 
channel distortions will allow us to solve one of the problems caused by an unknown 
delay (lag) between transmitter and receiver (Task 1). We will also need to handle the 
problem of an unknown phase difference caused by the unknown delay during 
demodulation (Tasks 3 and 4). 

3.	 Sharing: To share the communication medium amongst different concurrent 
transmissions, one approach is to use different carriers. But how do we extract 
different transmissions sent at different frequencies? We need to develop a solution to 
this problem (Tasks 2, 3, and 4). 

These challenges are tricky to overcome. They are hard enough on nice, well-behaved 
channels, but harder still if we were to try to get our solutions working over any real-world 
communication medium (in our case, audio) off the bat. A general approach to combat 
real-world complexities is to first design under a simplified simulation of real-world 
conditions. We will do that using the BypassChannel, which we introduced in earlier 
problem sets. By modeling the communication channel in terms of three basic abstractions --
noise, delay lag, LTI -- we can try out our ideas and test them under controlled conditions. 
After they work here, we will run them over real-world audio channels and see whether they 
need further tuning or refinement, and evaluate performance. Such a method is a good 
principle to adopt in general when confronted with the task of getting a real system working 
under complex conditions. 

In the tasks below, we (you!) will implement functions that will yield a complete, working 
(we hope) frequency-division multiplexing (FDM) system for Audiocom. 

Task 0 [from earlier PSets]: Noise and ISI with eye diagrams 

To make sure that everything you did earlier to get the audio labs working continues to work, 
let's run the following two commands over the bypass channel (use your own implementation, 
or the one we have provided in bypasschannel.pyc -- remembering to link or rename the 
appropriate Python version of this file to bypasschannel.pyc). Pick a suitable value for the 
number of samples per bit (say, 256). 

# python sendrecv.py -b -z .3 -f testfiles/A 

# python sendrecv.py -b -z .3 -u '.9 .6 .3 .1' -f testfiles/A 

The preamble should decode correctly and you should see the contents of the file 
7
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testfiles/a printed on screen: 

Mens et manus. 

Next, run the following over the real audio channel: 

# python sendrecv.py -f testfiles/A 

Make sure to include whatever other parameters you need to get your audio working, 
such as -q, -p, -i, -s, from your previous experience. 

If the preamble decodes and the message decodes correctly ("Mens et manus." FTW!), then 
you're in good shape. Make sure to save the relevant parameters someplace, so you can use 
them in the following tasks. 

Task 1: Building your own preamble detector 

Note: this task may not be easy to get working, despite the fairly detailed directions; if you 
get stuck, just move on to the later tasks below, using the preamble.pyc module we have 
provided. You can come back to using your own preamble.py implementation later. 

The problem: The transmitter may start transmitting at any point in time. How does the 
receiver know when a legitimate transmission has begun? This problem is tricky because even 
when the transmitter is not sending anything, a receiver listening on the medium will acquire 
samples. We need a way to determine that a legitimate transmission has started. 

Over many communication media, including audio and radio, this task is performed using a 
preamble. A preamble is a known sequence of bits with some nice properties; each bit is 
converted to samples_per_bit samples to produce the preamble sample sequence. The 
receiver's task is to look for a sample sequence that most closely resembles the known 
preamble sample sequence, using that to infer the beginning of a packet. The preamble helps 
synchronize the transmitter and receiver. 

When the receiver starts running, in general it does not get the samples immediately because 
there is an unknown lag (in our lab, largely because of software overheads). Moreover, to 
ensure that the receiver is ready, we insert some number of "quiet" (zero) samples to ensure 
that the receiver does not miss the preamble of any packet. 

Look at the file preamble.py -- it contains the Preamble class. This class defines the main 
part of the preamble, called the Barker sequence (in our case, it is the concatenation of two 
different Barker sequences, but this is a minor and irrelevant technicality). The Barket bit 
sequence is 24 bits long whose first bit starts with "1". The transmitter sends the 
corresponding sample sequence at the beginning of each transmission, usually after sending 
some number of 0-valued "quiet" bits (the number of quiet bits does not matter to the 
receiver, which should focus on looking for the preamble). 

Your task is to write the body of detect in the Preamble class to determine the index in the 
numpy array of demodulated samples, dsamples, corresponding to the first sample of the 
preamble. 

detect(self, dsamples, receiver, offset): 
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returns an integer index. The offset is a hint provided from the caller telling detect to start 
looking from dsamples[offset] for the preamble sequence. 

There are many ways to design and implement detect. Here's one that we have found works 
well over the audio channel (and the bypass channel). 

1. 

2. 

3. 

4. 

Convert the known Barker bit sequence, accessible using self.barker(), to a sample 
sequence. To do that, use the Mapper's bits2samples function in mapper.py. This 
function takes a sequence of bits and produces the corresponding numpy array of 
samples by expanding each bit to samples-per-bit samples. You can get to the Mapper 
object using receiver.mapper 
Produce the transmitted signal waveform corresponding to the numpy array of 
samples built from the known Barker sample sequence. You can do that by multiplying 
the array of preamble samples with a local carrier at the carrier frequency. You may 
use the function sendrecv.local_carrier for this purpose (see sendrecv.py), passing 
to it the carrier frequency (receiver.fc), the length of the samples array 
corresponding to the Barker sequence, and the sampling rate of the system 
(receiver.samplerate). You should take a look at sendrecv.local_carrier and 
make sure you understand what it is doing. 
Then, demodulate the result of the above step by calling receiver.demodulate, 
passing the waveform as an argument. What we're doing here is to capture any 
imperfections in the demodulation induced by things like the receiver filter. 
Correlate the result of the previous step (the demodulation of the modulation of the 
preamble samples) with the received dsamples array. You may perform this step by 
writing a separate helper function, correlate, which takes two arguments, x and y, 
both numpy arrays, and returns the index in array y corresponding to the best 
occurrence of sequence x. You may assume that len(x) <= len(y), and return 0 if either 
len(x) > len(y) or if len(x) is 0. Compute this "best correlation" by computing the 
maximum normalized dot product of x with all subsequences of y whose length is 
equal to the length of x. The correlation between two equal-length numpy arrays, x 
and y, is defined as the normalized dot product between x and y, i.e., as (x dot y) / ( 
norm(x)*norm(y) ), where "dot" is the vector dot product. To compute the norm of a 
numpy array, feel free to use a built-in function from numpy's linear algebra library: 
numpy.linalg.norm(y), where y is a numpy array. 

The function correlate should return the index (argmax) of the maximum correlation 
between u and all possible y's that are subsequences of v. For example: 

correlate([0.2, 0.4, 0.6, 0.8], [0.1, -0.05, 0.05, 0.08, 0.14,
 0.22, 0.4, 0.8, 0.1, 1.0] 

should return 2, because the subsequence [0.05, 0.08, 0.14, 0.22] has the highest 
correlation among all possible choices for x = [0.2, 0.4, 0.6, 0.8]. 

Note that the array dsamples may be too long, and searching for the preamble samples 
through the entire array may be too slow. To speed-up this search, we don't need to 
search through the entire reception because we know that the preamble is somewhere 
near the beginning of the reception, once the intial "quiet" samples (which may have 
been corrupted by noise) have been dealt with. To help here, inside the main receive 
function, we have computed a likely offset where some non-zero energy corresponding 
to the first "1" might occur. Our recommendation is that you start your preamble search 
from dsamples[offset] and try to find the preamble by correlating over a number of 
samples equal to two or three times the length of the preamble's Barker sequence 
(self.barkerlen()*3*mapper.spb). 
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5. Finally, detect should return a value of offset + index, where index was the value 
returned by correlate 

Upload your preamble.py: 

(points: 4) 

Task 2: Envelope demodulation with two transmissions? 

Recall the modulation step: multiply the signal (after mapping bit "1" and bit "0" to the 
appropriate voltage levels, +V=1 volt for a "1" and 0 volts for a "0" in on-off keying) with a 
cosine carrier of a specified carrier frequency. We did this step to match the signal sent to 
the characteristics of the communication channel, which in our case of the audio channel 
is able to carry sinusoids across some frequency range. With envelope demodulation, all we 
do is to take the absolute value of the received samples and then run the result through a 
simple averaging filter. The averaging filter has a positive value whenever we detect a "1" 
sample, and is close to "0" when we detect a "0" sample. The final step is to take the average 
of the middle M bits of each bit, where M is one-half the value of the samples per bit. I.e., if 
the samples per bit is spb, we take the samples spb/4 to 3*spb/4 in each bit period and return 
the mean value as the bit. 

The averaging filter averages a certain number of samples corresponding one-half of the 
sinusoid cycle. The number of samples depends on the carrier frequency. 

Suppose we use this method (from PS4, or from demodulate_audiocom.pyc) for two 
concurrent transmissions. Will it work? To answer this question, run the following (the -G 
option specifies the frequency gap, in Hz, between the carrier frequencies of the concurrent 
transmissions, starting from the base specified in the -c option): 

python sendrecv.py -f testfiles/A -f testfiles/B -c 1000 -G 800 

What do you get? Did the method work? Explain what happened. 

(points: 2) 

Task 3: Heterodyned demodulation 

We need a strategy to extract the messages modulated on different carriers at the receiver. A 
clever way to do that is with heterodyned demodulation: multiply the received samples by a 
local version of the same carrier sinusoid that was used by the transmitter. Let's first do that 
over the BypassChannel, and let's first get it to work for a single transmission. 

In demodulate.py, fill in the body of heterodyne by multiplying the received samples by a 
cosine (the same as the carrier) with the specified carrier frequency. You can do this by 
calling sendrecv.local_carrier as explained in Task 1. Also fill in the body of the 
avgfilter function (which you figured out in PS4), averaging over the number of samples in 
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a half-period of the carrier waveform. Note that some of the interfaces to these functions 
have changed in this PSet from before. 

Then run the following: 

# python sendrecv.py -f testfiles/B -b -z 0.1 -d het 

You should see the contents of testfiles/B: 

E pluribus unum. 

If you aren't able to decode the preamble or reliably see the contents printed on screen, you 
could try using the avgfilter we have provided in demodulate_audiocom.pyc (rename or 
link to the appropriate Python version of this file). If that still doesn't work, you probably 
have a bug in the multiplication by the local carrier. 

Now try running the heterodyned demodulator over the audio channel: 

python sendrecv.py -f testfiles/B -d het 

It probably won't work reliably. If it does, it was probably good luck, and we still need to 
understand why you got lucky...! 

To understand what's going on, let's go back to our BypassChannel. Run the following four 
experiments, which add a delay lag (in number of samples) between transmitter and receiver, 
where X is the ratio of the sampling rate (default: 48000 per second) to the carrier frequency 
(default: 1000 Hz): 

python sendrecv.py -f testfiles/B -b -z 0.1 -l 0 -d het 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X -d het 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X/2 -d het 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X/4 -d het 

What can you conclude from these experiments about the heterodyned demodulator and why 
it does not always work (but sometimes does)? (To be sure, you may want to try this 
command with our implementation of BypassChannel, provided in bypasschannel.pyc.) 

(points: 2) 

Task 4: Quadrature demodulation 

By now, you've probably understood that we need quadrature demodulation (see Chapter 
14), and not a purely heterodyned demodulation, to handle an arbitrary delay lag between 
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transmitter and receiver. Taking advantage of Python's natural support for complex numbers, 
we will multiply the received waveform by a complex exponential waveform at the carrier 
frequency. 

We will also take advantage of the fact that we're using on-off keying, so after passing the 
multiplied result through a low-pass filter, we can take the absolute values of the complex 
numbers to produce the demodulated samples (which will therefore be real-valued). 

Write the body of the following function: 

def quadrature(samples, carrier_freq, config) 

This function should simply multiply samples by the quadrature version of the local carrier 
and return the corresponding numpy array. The receive function in receiver.py then calls a 
filter. You can pick a filter using the -t option: -t avg is the default (averaging filter), while 
-t sinc (which you'll write later) picks a sinc low-pass filter. 

Let's first investigate the averaging filter from before. Use only one transmission because we 
first have to show that this simple part works. Produce eye diagrams if you wish, to pick a 
good samples_per_bit. Run the following tests: 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X -d quad 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X/2 -d quad 

python sendrecv.py -f testfiles/B -b -z 0.1 -l X/4 -d quad 

python sendrecv.py -f testfiles/B -d quad 

As before, X = sampling rate / carrier frequency. 

Does your quadrature demodulator (with the above commands) correctly receive data? 
Explain why it works (or doesn't work). 

(points: 2)  

Now add in a second transmission:  

# python sendrecv.py -f testfiles/A -f testfiles/B -b -z 0.1 -l X/4 -G
600 -d quad 

Does this quadrature demodulator correctly receive data? What if you added a third 
transmission, and a fourth (just use testfiles/C, testfiles/D to add more files). Explain your 
answer. Your explanation should be informed by playing close attention to the signal 
spectrum arriving at the receiver and after passing through the quadrature demodulator and 
the averaging filter. You can produce these spectra by modifying sendrecv.py as follows: first, 
add the following at the top of the file: 

12



      

  
  
  
  
      
  
      
      
  

  
     

      
    

      

  

  

       
   

    
  

      
     

   
  

   
   

  
 

  

import demodulate 

Then add this code around line 206 (right before the line that reads # process the 
received samples): 

if opt.demod == 'quad':
  plot_sig_spectrum(numpy.real(samples_rx), 'modulated samples')
  p.show()
  demod = demodulate.quadrature(samples_rx, opt.channel[0], opt)
  if opt.filter == 'sinc':

  plot_sig_spectrum(numpy.real(demod), 'demodulated samples')
  else:

  filtered = demodulate.avgfilter(demod, opt.channel[0], opt)
  plot_sig_spectrum(numpy.real(filtered), 'demodulated samples filtered by averaging')

  p.show() 

(points: 2) 

It is possible a better filter at the receiver will allow it to correctly extract only the part of the 
received signal intended for it, ignoring everything else. Each receiver doing that may allow 
for many concurrent receptions. 

We have learned about such a filter: the sinc LPF. An ideal sinc has an infinite number of 
non-zero components in its unit-sample response, which is hard to implement on a computer 
in finite time. So we will build a sinc filter of some pre-defined length, say L=50. 

Your job is to implement the following function:

  def lpfilter(samples_in, carrier_freq, config) 

Here, samples_in is the numpy array of samples that we would like to apply the LPF to. The 
carrier frequency is carrier_freq, and config maintains all the other parameters of the 
experiment. Inside lpfilter, your first task should be to pick a good cutoff frequency for the 
LPF. You can approach this task with the following steps: 

1.	 How should you pick the cutoff frequency of the sinc LPF? You need to set this to a 
value that will support multiple concurrent transmissions. Factors that you may want to 
consider include the frequency spectrum of the input signal (which depends on the 
samples per bit, config.spb), the sample rate (config.samplerate), and the 
frequency gap between successive carriers (config.changap). You don't necessarily 
need to incorporate all these factors in your cutoff frequency setting. 

2.	 Generate the unit-sample response, h, for the sinc filter, of length L=50. Do that by 
creating a numpy array, h, with h[i] corresponding to the sinc filter of cutoff frequency 
omega_cut, for -50 ≤ i ≤ 50, including at i &eq; 0 

3.	 Then, convolve samples_in with h, and return that result. You may implement the 
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convolution yourself or use numpy.convolve; the returned result should be a numpy 
array. 

Upload your demodulate.py: 

(points: 4) 

The final question concerns an experiment where you "put it all together". Run your 
quadrature demodulator on multiple transmissions and see if you can demodulate properly. 
How many concurrent xmissions are you able to handle? You may send actual data files 
(using -f). When you run the following, how many of the concurrent transmissions is your 
system able to correctly detect and decode? 

# python sendrecv.py -f testfiles/A -f testfiles/B -f testfiles/C -f
testfiles/D -f testfiles/E -f testfiles/F -G 600 -d quad -t sinc -b -z 0.2 

And finally, what about: 

# python sendrecv.py -f testfiles/A -f testfiles/B -f testfiles/C -f
testfiles/D -f testfiles/E -f testfiles/F -d quad -t sinc -G 600 

Note that you may need to change the frequency gap to a different value in the -G option 
above, and may also need to increase samples_per_bit to a value larger than the default of 
256. 
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