
  
 

  

 

 

 

Your answers will be graded by actual human beings (at least that's what we believe!), so 
don't limit your answers to machine-gradable responses. Some of the questions specifically 
ask for explanations; regardless, it's always a good idea to provide a short explanation for 
your answer. 

Please read Chapter 15 before solving these problems (and you may find it useful to consult 
these while solving them too). Please also solve the online practice problems on MAC 
protocols and the problems at the end of Chapter 15. 

Problem 1. 

Tim D. Vider thinks Time Division Multiple Access (TDMA) is the best thing since sliced 
bread. In Tim's network with N nodes, the offered load is not uniform across the different 

nodes. The rate at which node i generates new packets to transmit is r_i = 1/2i packets per 
time slot (1 ≤ i ≤ N). That is, in each time slot, the application on node i produces a packet to 
send over the network with probability r_i. 

A.	 Tim runs an experiment with TDMA for a large number of time slots. At the end of the 
experiment, how many nodes (as a function of N) will have a substantial backlog of 
packets (i.e., queues that are growing with time)? 

B.	 Let N=20. Calculate the utilization of Tim's TDMA protocol for this non-uniform 
workload. 
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(points: 3) 

Problem 2. 

Ben Bitdiddle sets up a shared medium wireless network with one access point (AP) and N 
client nodes. Assume that both the AP and the N client nodes are backlogged. Each of the N 
clients wants to send its packets to the access point; the AP's packets are destined to various 
clients. The network uses slotted Aloha with each packet fitting exactly in one slot. Ben sets 
the transmission probability, p, of each client node to 1/N and sets the transmission 
probability of the AP to a value p_a. 

A.	 Determine the utilization of the network in terms of N and p_a. 

(points: .5) 

B.	 What is the utilization of the network when N is large? 

(points: .5) 

C.	 Suppose N is large. What value of p_a ensures that the aggregate throughput of packets 
received successfully by the N clients is the same as the throughput of the packets 
received successfully by the access point? 

(points: 1) 

From here on, only the client nodes are backlogged -- the access point has no packets to send. 
Each client node sends with probability p (don't assume it is 1/N ). 
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Ben Bitdiddle comes up with a cool improvement to the receiver at the access point. If 
exactly one node transmits, then the receiver works as usual and is able to correctly decode 
the packet. If exactly two nodes transmit, he uses a method to cancel the interference caused 
by each packet on the other, and is (quite remarkably) able to decode both packets correctly. 

D.	 What is the probability, P2, of exactly two of the N nodes transmitting in a slot? Note 
that we want the probability of any two nodes sending in a given slot. 

(points: 1) 

E.	 What is the throughput of slotted Aloha with Ben's receiver modification, measured in 
packets per time slot? Write your answer in terms of N, p, and P2, where P2 is defined 
in the problem above. 

(points: 1) 

Problem 3. 

Ben Bitdiddle runs the slotted Aloha protocol with stabilization. Each packet is one time slot 
long. At the beginning of time slot T, node i has a probability of transmission equal to p_i, 1 ≤ 
i ≤ N, where N is the number of backlogged nodes. The increase/decrease rules for p_i are 
doubling/halving, with p_min ≤ p_i ≤ p_max, as described in Chapter 15. 

Ben notes that exactly two nodes, j and k, transmit in time slot T. Derive an expression for 
the probability that node either node j or node k will transmit successfully in time slot T+1. 
Show your work. 

(points: 2) 

Problem 4. 

Token-passing is a variant of a TDMA MAC protocol. Here, the N nodes sharing the medium 
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are numbered 0, 1, ..., (N-1). The token starts at node 0. A node can send a packet if, and 
only if, it has the token. When node i with the token has a packet to send, it sends the packet 
and then passes the token to node (i+1) mod N. If node i with the token does not have a 
packet to send, it passes the token to node (i+1) mod N. To pass the token, a node broadcasts 
a token packet on the channel and all other nodes hear it correctly. 

A data packet occupies the channel for time T_d. A token packet occupies the channel for 
time T_k. If s of the N nodes in the network have data to send when they get the token, 
calculate the utilization of the channel in terms of the parameters above. Note that the 
bandwidth used to send tokens is pure overhead; the throughput we want corresponds to the 
rate at which data packets are sent. 

Hint: When 20% of the nodes have data to send (i.e., s/N = 0.2) and T_d=10*T_k, the 
utilization is 2/3. 

(points: 2) 

Problem 5. Contention windows 

Recall the MAC protocol with contention windows from Chapter 15 (Section 15.8). Here, 
each node maintains a contention window, W, and sends a packet t idle time slots after the 
current slot, where t is an integer picked uniformly in [1,W]. Assume that each packet is 1 
slot long. 

Suppose there are two backlogged nodes in the network with contention windows W1 and 
W2, respectively (W1 ≥ W2). Suppose that both nodes pick their random value of t at the 
same time. What is the probability that the two nodes will collide the next time they each 
transmit? 

(points: 2) 

Problem 6. Two radios. 

Eager B. Eaver gets a new computer with two radios. There are N other devices on the 
shared medium network to which he connects, but each of the other devices has only one 
radio. The MAC protocol is slotted Aloha with a packet size equal to 1 time slot. Each device 
uses a fixed transmission probability, and only one packet can be sent successfully in any 

4



 

 

time slot. All devices are backlogged. 

Eager persuades you that because he has paid for two radios, his computer has a moral right 
to get twice the throughput of any other device in the network. You begrudgingly agree. 

Eager develops two protocols: 

Protocol A: Each radio on Eager's computer runs its MAC protocol independently. That is, 
each radio sends a packet with fixed probability p. Each other device on the network sends a 
packet with probability p as well. 

Protocol B: Eager's computer runs a single MAC protocol across its two radios, sending 
packets with probability 2p, and alternating transmissions between the two radios. Each other 
device on the network sends a packet with probability p. 

A.	 With which protocol, A or B, will Eager achieve higher throughput? 

(points: 1) 

B.	 Which of the two protocols would you allow Eager to use on the network so that his 
expected throughput is double any other device's? 

(points: 1) 

Introduction to this week's Python tasks. 

This lab uses WSim, a simple packet-level network simulator for a shared medium network. 
You will be writing a small amount of code to develop various MAC protocols and measure 
how they perform under different conditions. Much of your work will be on experimenting 
with various parameters and explaining what you observe. The amount of new code you have 
to write is rather small. 

In each experiment, all the nodes run the same MAC protocol. The simulator executes a set 
of steps every time slot; time increments by 1 each slot. 

You can run the python programs for this lab using python from the terminal command line, 
e.g., python PS7_???.py. This lab may not work well in IDLE (you can use IDLE to edit 
files, but running them may not work as expected). 
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To understand the different parameters one can set in WSim, go to a shell (i.e., command line 
prompt on a terminal application) and enter: 

python PS7_tdma.py -h 

This command prints out the various options; the important ones are: 

1.	 Packet size: In any given experiment, the size of a packet is fixed. It has to be an 
integral number of time slots in size (1 or more). To set the packet size, use the -s 
option; the default is 1. Notice that setting a large packet size (say, 10) emulates an 
"unslotted" network. 

2.	 Number of nodes: The number of nodes in a run of WSim; default is 16. Set using -n. 

3.	 Retry: If two or more nodes are actively sending a packet in the same time slot, they 
collide and both packets are considered lost. The -r option decides whether the node 
should retry the packet or not upon failure. In WSim, the feedback about whether a 
packet succeeded or not (i.e., collided) is instantaneous, with the sending node 
discovering it in the same time slot as the transmission. By default, the retry option is 
"off". When it is turned on, at an offered load of 100% (which is what we will use in 
this lab), the actual load presented to the system exceeds the channel's maximum rate. 
That is, we would expect most queues to be backlogged most of the time with these 
settings. 

4.	 Skew: The -k option specifies whether the load is skewed or not. The load itself is 
generated according to a random process, whose details aren't important for this lab. 
By default, the skew is off, so all nodes generate the same load on average. When the 
-k option is set, then the total offered load, L, is divided in geometrically-spaced 
amounts. Node 0 presents a load of L/2, node 1 a load of L/4, node 2 a load of L/8, and 

so on. The last two nodes each present the same load, L/2N-1, where N is the total 
number of nodes. 

5.	 GUI: The -g option turns on the graphical user interface, which may be of some use in 
debugging your code. We recommend that you set the parameters for the 
simulation from the command line and not from the GUI, as the GUI's parameter 
setting code may not port well across different python installations. 

Experimental method 

WSim runs for a specified number of time slots (settable using the -t option, with a default of 
10000) and prints out some performance numbers (and possibly displays some graphs) at the 
end. Of interest to us are the utilization and fairness numbers, which are defined in the 
lecture notes. The code reports a "weighted" fairness number as well, which is the fairness 
index calculated over the ratio of the observed throughputs to offered loads. The 
(unweighted) inter-node fairness is calculated over the throughputs alone, without regard to 
the offered load. 

In this lab, you will write the core of three MAC protocols---TDMA, stabilized Aloha (with 
backoffs), and CSMA---and understand their performance. Each node is an object, which has 
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three methods that you can use to implement the core of the MAC protocol: 

boolean = node.channel_access(time,ptime,numnodes)

This method is called by WSim every time slot when the node has a packet waiting to 
be sent in its queue. This method should return True if the MAC protocol you're 
implementing would like a packet sent in the current time slot, and False otherwise. 
time is current time, ptime is the packet size in time slots, and (for TDMA) numnodes 
is the number of nodes in the network. (You must not use numnodes in the other 
protocols.) 

node.on_collision(packet)

Called every time slot in which the node has experienced a collision. 

node.on_xmit_success(packet)

Called every time slot in which the node has successfully completed the transmission of 
a packet (i.e., no collisions occurred during transmission). 

You can modify any per-node state that you want to in these methods (e.g., the state 
maintained by the backoff scheme, statistics of interest, etc.). Make sure to add the code to 
initialize this state in the Node object's __init__ function, whose body is included in the lab 
task files. 

In many of our experiments, we will use the -r option, which cause the nodes to retry upon 
experiencing a collision. (Of course, the MAC protocol's channel_access() method will 
determine when the retry actually occurs.) 

Useful download links: 

Zip archive of all the Python files  
PS7_wsim.py -- packet-level simulator  

Python Task #1: Time Division Multiple Access (TDMA) 

Useful download link: 

PS7_tdma.py -- template file for this task 

Implement a simple TDMA scheme by suitably filling in the channel_access() method in 
the template file PS7_tdma.py. Recall that in a TDMA scheme, time is divided into numnodes 
equal-size slots, each long enough to accommodate the transmission of a single packet and 
that each node is allocated one of the slots to use when it has a packet to transmit (see §15.3 
of Chapter 15). Note that a node can determine its unique node number (an integer between 0 
and numnodes - 1) by calling self.get_id(). 

The slightly tricky part of this function is to correctly handle packet sizes that are larger than 
1 time slot. We want the TDMA scheme to treat each packet as an atomic unit of 
transmission; when the protocol determines that a given node can send, that node should send 
the complete packet. That is, we want the effective size of a time slot in the scheme to be 
equal to the packet size. You will probably find it easier to first write the function and run it 
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for a packet size of 1 slot, then modify your code to correctly handle larger packet sizes. Note 
that when the packet size is set to some value using the -s option, all nodes will use that 
value. 

Run the following, after you test your code with various packet sizes to ensure that there are 
no collisions: 

python PS7_tdma.py -t 2000

(16 nodes, packet size = 1 slot, simulation time = 2000 slots) 

python PS7_tdma.py -s 7 -t 14000

(16 nodes, packet size = 7 slots, simulation time = 14000 slots) 

python PS7_tdma.py -k -n 20

(20 nodes, skewed load, packet size = 1 slot, simulation time = 10000, the default 
value) 

When you're ready, please submit the file with your code using the field below. 

File to upload for Task 1: 

(points: 1) 

Questions: 

A.	 Please run the following experiments using a skewed load (-k) where the load offered 
by a node decreases with the node number, i.e., high-numbered nodes have a packet to 
transmit much less frequently than low-numbered nodes. 

python PS7_tdma.py -k -n 10 
python PS7_tdma.py -k -n 20 
python PS7_tdma.py -k -n 40 
python PS7_tdma.py -k -n 80  

Please report the utilization from each experiment (look for util in the printout). With 
a skewed load, as one increases the number of nodes, what happens to the utilization? 
Why? 

(points: 0.5) 

B.	 What is the number of nodes at which the network utilization is smaller than 0.25 for 
the skewed workload? (Because each run is randomized, run it a few times to be 
confident of your answer.) 
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(points: 0.5) 

Python Task #2: Stabilizing Aloha (with Backoff) 

Useful download link: 

PS7_stabaloha.py -- template file for this task 

In this task, we will develop a stabilization method for Aloha using randomized backoffs, as 
described in §15.5 (but also read §15.4 and §15.6 for the full story). Our goal is to adaptively 
select the transmission attempt probability, p, used in the channel_access method. To do 
that, write your code in PS7_stabaloha.py to adjust p in the on_collision and 
on_xmit_success methods, which are called when a packet transmission fails and succeeds, 
respectively. 

We will use two parameters, pmax and pmin. These correspond to the maximum and 
minimum values of the transmission attempt probability, p. The values of these parameters 
can be set from the command line when you run the program, and are available as 
self.network.pmax and self.network.pmin respectively (see the __init__ function of 
AlohaWirelessNetwork). In your code, ensure that pmin ≤ p ≤ pmax. 

You can use any algorithm you want to set p in these functions, including the ones discussed 
in lecture. Good schemes achieve high utilization, but also ensure that fairness is high, and 
avoid the capture effect. The fairness should be as close to 1 as possible -- when the number 
of nodes is between 8 and 16, fairness lower than 0.9 is a sign that there is significant 
unfairness. There is no absolute correct answer (though there are bad methods!), so feel free 
to be creative if you think you have a good idea. Note that you are not allowed to use the 
number of backlogged nodes or numnodes in your scheme, because that information would 
not be available in practice. 

Run your code as follows for a few different settings of pmin and pmax and observe the 
utilization and inter-node fairness values. 

python PS7_stabaloha.py -r -n 8 --pmin=value --pmax=value 

(Note the two dashes in front of the pmax and pmin options.) 

When you're ready, please submit the file with your code using the field below. 

File to upload for Task 2: 

(points: 2) 
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Questions: 

A.	 Run python PS7_stabaloha.py -r -n 8 --pmin=0 --pmax=1. Would you 
recommend running a real network with these parameters for pmin and pmax? Briefly 
explain your answer. 

(points: 0.5) 

B.	 Set pmin to 0.01 and pick pmax so that the fairness is as large as possible (at least 0.9) 
when the number of nodes is 8 and there is no load skew. What value of pmax did you 
pick? What is the utilization of your protocol when the packet size is 1 slot? How does 
it compare to the utilization when the packet size is 10 slots? For the first case (packet 
size of 1), run 

python PS7_stabaloha.py -r -n 8 --pmin=0.01 --pmax=value 

For the second case (packet size of 10), run 

python PS7_stabaloha.py -s 10 -t 70000 -r -n 8 --pmin=0.01 --pmax=value 

(points: 0.5) 

Python Task #3: Carrier Sense Multiple Access (CSMA) 

Useful download link: 

PS7_csma.py -- template file for this task 

In this task, we will try to get the best utilization and fairness we can for a MAC protocol that 
uses CSMA. To check if the channel is idle, you can use the 
self.network.channel_idle() from inside channel_access(). This function returns 
True if there is no on-going transmission in the current time slot, and False otherwise. 

Every carrier sensing mechanism has a detection time, defined as the time interval between 
the ending of a previous transmission and the detection of the channel as "idle" by a node. 
For the purposes of this lab, we will assume that the detection time is 0. Hence, a node can 
sense that the carrier is idle in the immediate next slot after the termination of the previous 
transmission, when it does the check for whether the channel is busy. However, it is still 
possible for collisions to occur, for multiple nodes could simultaneously sense the channel at 
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the beginning of a slot, and conclude that the channel is "idle", and possibly attempt a 
transmission in that time slot (or in the same future time slot). 

Write your code PS7_csma.py for the channel_access() method assuming that the node 
has the ability to sense the carrier. Obviously, you should fill in the steps for the 
on_collision() and on_xmit_success() methods as well. 

Test your code as follows. The -s option is important because it causes the packets to be 
longer than 1 slot, allowing a node to sense whether another transmission is in progress during 
a time slot. 

python PS7_csma.py -r -n 8 -s 10 -t 100000 --pmin=value --pmax=value 

Note that you should run the above for 100000 time slots, because we have scaled up the 
packet size to 10 (from 1). 

When you're ready, please submit the file with your code using the field below. 

File to upload for Task #3: 

(points: 1) 

Questions: 

A. What is the utilization and fairness of your protocol when pmin = 0 and pmax = 1? 

(points: 0.5) 

B.	 How would you set pmin and pmax in your protocol to make the fairness number be 
over 0.95 consistently while still maintaining good utilization (i.e., about 75% or so)? 
[This question may not be too easy; one may need some trial-and-error.] 

(points: 0.5) 

Python Task #4: CSMA with contention windows, as in WiFi (802.11) and Ethernet 
(802.3) 

Useful download link: 
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PS7_cw.py -- template file for this task 

The ALOHA and CSMA schemes in the previous tasks pick a probability p for transmitting a 
packet, and adapt p to stabilize the protocol. The advantage of this method is that it is easy to 
analyze. In practice, however, real-world CSMA protocols like the popular 802.11 WiFi 
standard and the 802.3 Ethernet standard implement something a bit different, as explained 
below. Your task will be to write the code for the key parts of this scheme. 

Rather than decide whether any given slot should have a transmission with probability p, 
each node maintains a contention window, which we denote by cw. cw is initially set to 
cwmin, which is a small positive integer (say, 1). Denote the current time slot by C. If the 
sender is backlogged, it picks a random integer t in [1, cw] and decides to send a packet in 
time slot C + t. 

Of course, with carrier sense in place, the sender should only send a packet if the channel is 
idle in time slot C + t. So, the sender senses the carrier in that time slot, and then sends a 
packet only if the channel is idle then. If the channel is not idle, it waits until the channel is 
idle, and then sends the packet. 

Whenever a collision occurs, the node doubles cw, but makes sure cw never exceeds cwmax 
(say, 512). Whenever a transmission is successful, the node might reset cw to cwmin, or might 
halve its current value of cw. You will note that this scheme is similar in spirit to the 
probabilistic transmission scheme of stabilized Aloha (Task #2), but a crucial difference is 
that here each backlogged node is guaranteed to send a packet within a finite time, unlike in 
the probabilistic case where there is always a small probability that the node cannot send 
within any given number of time slots. In mathematical terms, the probability distribution that 
governs whether a node transmits a packet in a given time slot is uniform in this scheme, 
while it is geometrically distributed in Tasks #2 and #3. 

You will first implement the scheme described thus far. It will turn out not to do as well as we 
would like, and in Task 4.2, you will fix an important weakness. 

Implement this scheme by writing the appropriate code for channel_access(), on_collision(), 
and on_xmit_success() in PS7_cw.py. Use self.network.cwmin and self.network.cwmax 
to access the values of cwmin and cwmax respectively. How well does it work? To answer this 
question, measure the utilization and fairness by running 

python PS7_cw.py -r -s 10 -n 16 -t 100000 -W 256 

The -W option sets the maximum contention window size. The minimum contention window 
is 1 (you can change it using the -w option if you like (lower case "w"). Running the above, 
you will note that even with carrier sense being used, the utilization is quite a bit lower than 
in Task 3. 

A.	 Report the utilization and fairness. Briefly explain why the utilization is low. Hint: 
Think about what happens if more than one node is backlogged and waiting for an 
on-going transmission to complete; what happens when the on-going one finishes? 
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(points: 0.5) 

To fix this problem, each node needs to ignore the time slots when other nodes are 
transmitting data. That is, if a node picks a time slot t in [1, cw] to transmit, it should wait for 
that many idle slots before attempting its own transmission. Of course, before transmitting 
data, it should ensure that the channel is idle. 

Modify your code to include the above suggestion and run the same command as before: 

python PS7_cw.py -r -s 10 -n 8 -t 100000 -W 256 

B.	 Report the utilization and fairness for your scheme after including the suggestion and 
running the same command as before. 

(points: 0.5)  

Please upload the final version of your Task #4 code:  

File to upload for Task 5: 

(points: 4) 
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