
 
 
 

6.02 Fall 2012 

Lecture #13 


• Frequency response  
• Filters 
• Spectral content 
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Sinusoidal Inputs and LTI Systems
 

h[n] 

A very important property of LTI systems or channels: 

If the input x[n] is a sinusoid of a given amplitude, 
frequency and phase, the response will be a sinusoid at the 
same frequency, although the amplitude and phase may be 
altered.  The change in amplitude and phase will, in 
general, depend on the frequency of the input. 
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Complex Exponentials as 

“Eigenfunctions” of LTI System 


x[n]=ejΩn h[.] y[n]=H(Ω)ejΩn 

Eigenfunction: Undergoes only scaling -- by the frequency 
response H(Ω) in this case: 

− jΩmH (Ω) ≡ ∑h[m]e
m 

= h[m]cos(Ωm) − j h[m]sin(Ωm)
∑ ∑ 
m m 

This is an infinite sum in general, but is well behaved if 

h[.] is absolutely summable, i.e., if the system is stable.
 

We also call H(Ω) the discrete-time Fourier transform (DTFT) 
of the time-domain function h[.] --- more on the DTFT later. 
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From Complex Exponentials to Sinusoids
 

cos(Ωn)=(ejΩn+e-jΩn))/2 

So response to a cosine input is: 

Acos(Ω0n+Ø0) |H(Ω0)|Acos(Ω0n+Ø0+<H(Ω0))H(Ω) 

(Recall that we only need vary Ω in the interval [–π,π].) 


This gives rise to an easy experimental way to determine  
the frequency response of an LTI system. 
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Loudspeaker Frequency Response
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 Spectral Content of Various Sounds
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Connection between CT and DT
 
The continuous-time (CT) signal 

sampled every T seconds, i.e., at a sampling 
frequency of fs = 1/T, gives rise to the discrete-time 
(DT) signal 

So Ω = ωΤ 

and Ω = π corresponds to ω = π/T or f = 1/(2T) = fs/2 
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                       x(t) = cos(ωt) = cos(2πft) 

              x[n] = x(nT) =  cos(ωnT) = cos(Ωn) 



    

      
     

       
 

 
                                    A little elaboration on

                Properties of H(Ω) 

Repeats periodically on the frequency (Ω) axis, with period 2π, 
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest!
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                                    A little elaboration on

                Properties of H(Ω) 

Repeats periodically on the frequency (Ω) axis, with period 2π, 
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 

Ω = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which 
stands for “direct current”, but now just means constant) input, 
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 

H(0) = ∑ h[m] --- show this from the definition!
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                                    A little elaboration on

                Properties of H(Ω) 
Repeats periodically on the frequency (Ω) axis, with period 2π, 
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 

Ω = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which 
stands for “direct current”, but now just means constant) input, 
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 

H(0) = ∑ h[m] --- show this from the definition! 

Ω = π or ‒π, i.e., AejΩn=(-1)nA, corresponds to the 
highest-frequency variation possible for a discrete-time 
signal, so H(π)=H(-π) is the high-frequency gain of the system.

 H(π) = ∑ (-1)m h[m] --- show from definition!
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Symmetry Properties of H(Ω) 

− jΩmH (Ω) ≡ ∑h[m]e

m 

= h[m]cos(Ωm) − j h[m]sin(Ωm)
∑ ∑ 
m m 

= C(Ω) − jS(Ω) 

For real h[n]: 
Real part of H(Ω) & magnitude are EVEN functions of Ω. 
Imaginary part & phase are ODD functions of Ω. 


For real and even h[n] = h[–n], H(Ω) is purely real. 

For real and odd h[n] = –h[–n], H(Ω) is purely imaginary.
 

6.02 Fall 2012 Lecture 13 Slide #11 



 
 

Convolution in Time <--->
 
Multiplication in Frequency
 

x[n] h1[.] h2[.] y[n] 

x[n] y[n]
(h2*h1)[.] 

In the frequency domain (i.e., thinking about input-to-output 
frequency response): 

x[n] H1(Ω) H2(Ω) y[n] 

i.e., convolution in time 
has become multiplication 

H(Ω)=H2(Ω)H1(Ω) in frequency! 
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Example: “Deconvolving” Output of
 
Channel with Echo
 

Channel, 
h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

Suppose channel is LTI with  


1[n]=δ[n]+0.8δ[n-1] 


− jΩm 
H1(Ω) = ?? = ∑h1[m]e

m 

= 1+ 0.8e–jΩ = 1 + 0.8cos(Ω) – j0.8sin(Ω)
So: 

|H

1(Ω)| = [1.64 + 1.6cos(Ω)]1/2 EVEN function of Ω; 

<H

1(Ω) = arctan [–(0.8sin(Ω)/[1 + 0.8cos(Ω)] ODD . 
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A Frequency-Domain view of Deconvolution
 

Channel, 
H

1(Ω) 
Receiver 
filter, H2(Ω) 

x[n] y[n] z[n] 

Noise w[n] 

Given H1(Ω), what should H2(Ω) be, to get z[n]=x[n]? 

H2(Ω)=1/H1(Ω) “Inverse filter” 

= (1/|H1(Ω)|). exp{–j<H1(Ω)} 

Inverse filter at receiver does very badly in the presence of noise  

that adds to y[n]: 
     filter has high gain for noise precisely at frequencies where  

channel gain|H1(Ω)| is low (and channel output is weak)! 
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 A 10-cent Low-pass Filter
 
Suppose we wanted a low-pass filter with a cutoff frequency of �/4? 


H�/4(Ω)x[n] H�/2(Ω) H3�/4(Ω) H�(Ω) y[n] 
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To Get a Filter Section with a 

Specified Zero-Pair in H(Ω)
 

• Let h[0] = h[2] = 1, h[1] = µ, all other h[n] = 0 


• Then H(�) = 1 + µe-j� + e-j2� = e-j� (µ + 2cos(�)) 

•	 So |H(�)| = |µ + 2cos(�)|, with zeros at  
                                                   ± arccos(-µ/2) 
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The $4.99 version of a Low-pass Filter,

 h[n] and H(Ω)
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 Determining h[n] from H(ΩΩ) 

H (Ω) = ∑h[m]e− jΩm 

m
 

jΩn

Multiply both sides by e and integrate over a 

(contiguous) 2� interval. Only one term survives! 


jΩn − jΩ(m−n)∫ H (Ω)e dΩ =  ∫ ∑h[m]e dΩ
 
<2π> <2π> m 

= 2π ⋅h[n] 

1 jΩnh[n] = ∫ H (Ω)e dΩ 
2π <2π> 
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Design ideal lowpass filter with cutoff 

frequency ΩΩC and H(Ω)=1 in passband
 

h[n] = 
1 ∫ H (Ω)e jΩndΩ 
2π <2π> 

1 ΩC
jΩn = ∫ 1⋅e dΩ 

2π −ΩC 

sin(ΩCn)= , n ≠ 0 
πn 

(extends to ±∞ in time,= ΩC /π , n = 0 
falls off only as 1/n)) 

DT “sinc” function 
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Exercise: Frequency response of h[n-D]
 

Given an LTI system with unit sample response h[n]  
and associated frequency response H(Ω), 

determine the frequency response HD(Ω) of an LTI 
system whose unit sample response is  

h
D[n] = h[n-D]. 

Answer: HD(Ω) = exp{-jΩD}.Η(Ω) 

so : |HD(Ω)| = |Η(Ω)| , i.e., magnitude unchanged

 <H

D(Ω) = -ΩD + <Η(Ω) , i.e., linear phase term added 
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e.g.: Approximating an ideal lowpass filter
 

–300 0 300 

h[n] H[Ω] 

–�  0 � 

Not 
causal 

n 

Ω
 

Idea: shift h[n] right to get 

causal LTI system. 

Will the result still be a  
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 Causal approximation to ideal lowpass filter
 

n 

Determine <HC(Ω) 
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DT Fourier Transform (DTFT) for 

Spectral Representation of General x[n] 


If we can write 

1 jΩn − jΩnh[n] = ∫ H (Ω)e dΩ where H (Ω) = ∑h[n]e
2π <2π> nAny contiguous 


interval of length

then we can write 2� 

1 jΩn − jΩnx[n] = ∫ X(Ω)e dΩ where X(Ω) = ∑x[n]e
2π <2π> n 

This Fourier representation expresses x[n] as  
a weighted combination of for all Ω in [–�,�].e jΩn 

X(Ωο)dΩ is the spectral content of x[n] 
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 Useful Filters
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 Frequency Response of Channels
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