
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 3: Naming

Systems
system = a bunch of resources, glued together with names
often the best way to view or build
often most interesting action is in the names

[cloud with components & connections]
what are the resources?
 often can view them as just three basic types

* Fundamental abstractions
 storage

mem, disk
layered: data struct, FS, disk arrays

interpreters
cpu
programming language e.g. java VM

communication
 wire, ethernet
layered: internet, ssh, unix pipe

we'll talk about all these abstractions during the course

Why these abstractions?
many components fit these molds
they work well together
hardware versions are cheap
for these abstractions, general techniques known
to increase performance, fault tolerance, functionality

Names
 all three abstractions rely on names

memory stores named objects
interpreter manipulates named objects
communication link connects named entities

 much of sys design is naming --- glue

DNS Example
what does web.mit.edu mean?
 you can look it up and turn it into an IP address

18.7.22.69
 Internet knows how to send data to IP addresses

 how does the translation work?

The big picture
my laptop O/S shipped with IP addrs of a few "root name servers"
these are hard-wired, in a file, about a dozen
198.41.0.4 (virginia)

128.63.2.53 (maryland)

 ...

 this list doesn't change much, otherwise old computers would break

my laptop picks a root server, sends it a query,

asking for IP address of the string "web.mit.edu"

each root server has exactly the same table, the root "zone"

edu NS 192.5.6.30

 edu NS 192.12.94.30

 com NS 192.48.79.30

 ...

 finds entries in root zone that matches suffix of "web.mit.edu"

 returns those records to my laptop

now my laptop knows who to ask about edu

re-sends request to one of the edu servers

each edu server has a copy of the edu zone

nyu.edu NS 128.122.253.83

mit.edu NS 18.72.0.3

 mit.edu NS 18.70.0.160

 returns the two MIT records to my laptop

now my laptop forwards request to an MIT server

each MIT server has a copy of the mit.edu zone

web.mit.edu A 18.7.22.69

 bitsy.mit.edu A 18.72.0.3

csail.mit.edu NS 18.24.0.120

 ...

DNS has a hierarchical name space
diagram of a tree

Where do the zone files come from?
 each zone centrally but independently administered
root by IANA, an international non-profit org
com by VeriSign, a company
MIT IS maintains its zone files, updates them on its servers

Why this design?
everyone sees same name space (at least for full names)
scalable in performance
via simplicity, root servers can answer many requests

via caching, not really described here

via delegation (keeps table size down)

contrast to single central server

scalable in management

MIT control own names by running its own servers

fault tolerant

There are problems:
who should control root zone? .com?
 load on root servers
 denial-of-service attacks
 security problems: how does client know data is correct?
how does verisign know i'm ibm.com when I ask it to change NS?

DNS has been very successful
25 years old
design still works after 1000x scaling
you can learn more about DNS from Chapter 4 of the notes

How do systems use DNS?
user-friendly naming (type a URL)
web page tells browser what to do on button press
i.e. connects one page to the next

Adobe PDF Reader contains DNS name for where (later) to check for upgrades
allows services to change IP address of servers (change hosting service)
DNS servers can give different answers to different clients

 turn www.yahoo.com into IP address near client

Naming goals
let's step back
1. user friendly
2. sharing

diagram: A and B both know N, refers to ...

3. retrieval (sharing across time)

A knows N, refers twice to ... over time

4. indirection

 diagram: A knows fixed N, refers to variable N', refers to ...

5. hiding
hide implementation
control access (access only if you know name, or hook to hand ACLs)

Naming systems are common, since so powerful
phone numbers
files / directories
e-mail addresses
 function/variable names in programs

Example: virtual addressing
often called "virtual memory" or "paging"

Why this example?
naming mechanism
well designed
solves many problems
basis for many neat o/s features

Memory
this is review from 6.004
 also Chapter 5 in notes
diagram: CPU, address/data wires, DRAM
DRAM an array of bytes
indexed with "physical address"
let us say 32-bit addresses
could have up to 4 GB of DRAM
example: LD R4, 0x2020

Why physical addressing not sufficient?
many reasons, as we will see
here's one: what if program too big to fit in DRAM?
but still fits in 2^32 bytes
e.g. two-megabyte program, only one megabyte of DRAM

Demand Paging
diagram: cpu, dram, disk
want some data to be in memory, some on disk
when program refers to data that's not in memory,

move something else from memory to disk,

load in the desired memory from disk

called "demand paging"

that's the original motivation, not so relevant any more

Virtual Addressing Idea

 diagram: MMU, two arrays of memory cells

set of arrows from left to right

"virtual addresses" vs "physical addresses"

s/w ONLY loads/stores using virtual addresses

phys addrs ONLY show up in the mapping table

conceptually, translations for all 2^32

some refer to physical memory

others to disk locations

 how to implement?
if per-byte mappings, 16 GB!
not practical to have a translation table with entry per byte addr

Page Tables
how to make the mapping table small?
divide virtual addresses into contiguous aligned "pages"
upper (say) 20 bits are "virtual page number"
MMU only maps page number -> upper 20 bits of a phys address
then use lower 12 va bits as lower 12 pa bits

Example:
page table:
0: 3 (i.e. phys page 3)
1: 0
 2: 4
 3: 5

 register R3 contains 0x2020

LD R4, (R3)

CPU sends (R3)=0x2020 to MMU

virtual page number is 2

offset is 0x20

 thus pa = 4*4096 + 0x20 = 0x4020

MMU sends 0x4020 on wires to DRAM system

Page table small enough to fit in DRAM
has 2^20 entries, probably 4 bytes each
now page table is only 4 MB, not so big

Where is the page table?
in memory
so can be modified with ordinary instructions

CPU Page Table Base Register points to base
so a memory reference conceptually requires *two* phys mem fetches
one to get the page table entry
one to get the actual data

allows us to keep multiple page tables, quickly switch

will come in handy later...

Flags
"Page Table Entry"
20 bits, plus some flags
Valid/Invalid, Writeable/ReadOnly
MMU only does translation if valid and correct read/write
otherwise forces a "page fault":
save state

 transfer to known "handler" function in operating system

Demand paging
page table:
0: 1, V
1: -, I
2: 0, V

and only two pages of physical memory!

if program uses va 0x0xxx or 0x2xxx, MMU translates

fault if program uses va 0x1xxx

handler(vpn):

(ppn, vpn') = pick a resident page to evict

write dram[ppn] -> disk[vpn']

pagetable[vpn'] = -, I

read dram[ppn] <- disk[vpn]

pagetable[vpn] = ppn, V

Demand paging discussion
picking the page to evict requires cleverness
e.g. least recently used

we are treating DRAM as a cache for "real" memory on disk

can do that b/c programs use "names" (va) for memory

we have full control over what the names mean

 map to DRAM

or arbitrary action in page fault handler

What do operating systems use page tables for?
Demand paging
Lazy loading of big programs
Zero fill
 Address spaces for modularity, defend against bugs

one page table per running program

one program cannot even name another program's memory!

Shared memory for fast communication

two different names for same physical page

tight control over what's shared

Copy-on-write fork

Distributed shared memory

Closing
keep your eyes out for naming systems
be aware in your own work
when introducing naming might help

finish up at start of next day

using virtual addressing as an example of naming
has turned out to be powerful, many uses of one underlying mechanism

diagram: cpu, mmu, ram, simplified mapping table
programs "name" data with virtual addresses
mapping is valid (refers to dram), or causes "page fault" to o/s
o/s fills in entry, returns

program never the wiser

what can you do with this naming mechanism?
demand page from disk: support big programs
lazy start from disk

 address spaces: different mappings for different programs
o/s switches depending on which program is currently running
cannot even *name* each other's memory
contains bugs

shared memory, e.g. X client and server (on same machine)
distributed shared memory
build parallel programs on a cluster of separate machines
but with shared memory, all one big program

diagram: draw other machine, its ram and map

page fault: fetch, mark him invalid

