
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 6: Client/server on one computer

Intro
 how to implement c/s on one computer
valuable in itself
 involves concurrency, an independently interesting topic

DP1 is all about concurrency

what do we want?
 [diagram: X client, X server, NO KERNEL YET]
client wants to send e.g. image to server
goal: arms-length, so X srvr not vulnerable to client bugs

idea: let kernel manage interaction
client/srvr interact w/ trusted kernel, not each other
[diagram: X client, X server, kernel]
let's focus on one-way flow (can use two for RPC)
buffer memory in kernel
each entry holds a message pointer

send(m) to add msg to buffer

receive(m) to read msg out of buffer

finite buffer, so send() may have to wait

buffer may be empty, so receive() may have to wait

why does buffer have multiple entries?

sender / receiver rates may vary around an average

let sender accumulate a backlog when it's faster

so receiver has input when sender is slower

very much like a UNIX pipe

problem: concurrency
some data structure inside kernel, s() and r() modify it
what if s() and r() active at same time? may interfere
concurrency a giant problem, will come up many times
let's start simple:
each program gets its own CPU
there is only one memory system

[diagram: two CPUs, one memory]

system calls run on both CPUs!

i.e. if program A calls send(), send() runs on A's CPU

send() and receive() interact via single shared memory system

data structure
 "bounded buffer"
 [diagram: BUFFER[5], IN, OUT]
each array entry: pointer to message buffer
IN: number of messages put into BB
OUT: number of messages read out of BB
IN mod 5 is next place for send() to write
OUT mod 5 is next place for receive() to look
example: in = 28, out = 26
two messages waiting, slots 1 and 2

in > out => BB not empty

in - out < 5 => not full

send() code slide
p is "port", points to instance of BB, so we can have many of them

 e.g. one per c/s pair, or one per UNIX pipe

loop to wait until room ("busy-wait")

write slot

 increment input count

receive() code slide
loop to wait until more sends than recvs
if there's a message
increment p.out AFTER copying msg
since p.out++ may signal send() to overwrite

if send() is waiting for space

I believe this simple BB code works
[show slide with both]
even if send() and receive() called at same time
concurrency rarely work out this well!

Assumptions for simple BB send/recv
1. One sender, one receiver
2. Each has its own CPU (otherwise loop prevents other from running)
3. in and out don't overflow
 4. CPUs perform mem reads and writes in the order shown

oops! this code probably won't work as shown!

compiler might put in/out in regs, not see other's changes

CPU might increment p.in before writing buffer[]

I will assume memory R/W in program order

Suppose we want multiple senders
e.g. so many clients can send msgs to X server

would our send() work?

Concurrent send()
A: send(p, m1) B: send(p, m2)

what do we *want* to happen?

what would be the most useful behavior?

 goal:

two msgs in buf, in == 2

we don't care about order

Example prob w/ concurrent send()
on different cpus, at the same time, on the same p
A B
 r in, out

 r in, out

w buf[0]

 w buf[0]

r in=0

 r in=0

 w in=1

 w in=1

 result: in = 1, one message in bounded buffer, and one was lost!

This kind of bug is called a "race"
once A puts data in buffer, it has to hurry to finish w/ incr of p.in!

Other races in this code

 suppose only one slot left

A and B may both observe in - out < N

put *two* items in buf, overwrite oldest entry

Races are a serious problem
easy mistake to make -- send() looks perfectly reasonable!
hard to find
 depends on timing, may arise infrequently
e.g. Therac-25, only experienced operator typed fast enough

How to fix send()'s races?
original code assumed no-one else messing w/ p.in &c

only one CPU at a time in send()

== isolated execution

 can we restore that isolation?

Locks
 a lock is a data type with two operations

acquire(l)

s1

 s2

 release(l)

the lock contains state: locked or unlocked

 if you try to acquire a locked lock

acquire will wait until it's released

if two acquire()s try to get a lock at same time

one will succeed, the other will wait

How to fix send() with locking?
[locking send() slide]
associate a lock w/ each BB
acquire before using BB
release only after done using BB

high-level view:

no interleaving of multiple send()s

only one send() will be executing guts of send()

likely to be correct if single-sender send() was correct

Does it matter how send() uses the lock?
move acquire after IF? [slide]

Why separate lock per bounded buffer?
rather than e.g. all BBs using same lock
that would allow only one BB to be active

but it's OK if send()s on different BBs are concurrent

lock-per-BB improves performance / parallelism

Deadlock
 big program can have thousands of locks, some per module
once you have more than one lock in your system,
you have to worry about deadlock

deadlock: two CPUs each have a lock, each waiting for other to release
example:
implementing a file system
need to ensure two programs don't modify a directory at the same time
have a lock per directory

 create(d, name):

acquire d.lock

if name exists:

 error

 else

 create dir ent for name

 release d.lock

 what about moving a file from one dir to another? like mv

move(d1, name, d2):

acquire d1.lock

acquire d2.lock

delete name from d1

 add name to d2

 release d2.lock

 release d1.lock

 what is the problem here?

Avoiding deadlock
look for all places where multiple locks are held
make sure, for every place, they are acquired in the same order
then there can be no locking cycles, and no deadlock

for move():

sort directories by i-number

lock lowere i-number first

 so:

 if d1.inum < d2.inum:

 acquire d1.lock

acquire d2.lock

else:

 acquire d2.lock

acquire d1.lock

this can be painful: requires global reasoning

acquire l1

print("...")

does print() acquire a lock? could it deadlock w/ l1?

the good news is that deadlocks are not subtle once they occur

Lock granularity
how to decide how many locks to have, what they should protect?
a spectrum, coarse vs fine
coarse:
 just one lock, or one lock per module
e.g. one lock for whole file system

more likely correct

but CPUs may wait/spin for lock, wasting CPU time

"serial execution", performance no better than one CPU

fine:

 split up data into many pieces, each with a separate lock

different CPUs can use different data, different locks

operate in parallel, more work gets done

but harder to get correct

more thought to be sure ops on different pieces don't interact

e.g. deadlock when moving between directories

always start as coarse as possible!
use multiple locks only if you are forced to, by low parallel performance

How to implement acquire and release?
Here's a plan that DOES NOT WORK:
acquire(l)
while l == 0
 do nothing
l = 1

 release(l)

l = 0

 Has a familiar race:

 A and B both see l = 0

 A and B both set l = 1

 A and B both hold the lock!

If only we could make l==0 test and l=1 indivisible...
most CPUs provide the indivisible instruction we need!
differs by CPU, but usually similar to:
RSM(a)

r <- mem[a]

mem[a] <- 1

return r

 sets memory to 1, returns old value

RSM = Read and Set Memory

How does h/w make RSM indivisible?
a simple plan
two CPUs, a bus, memory
only one bus, only one CPU can use it
there's an arbiter that decides
 so CPU grabs bus, does read AND write, releases bus
arbiter forces one RSM to finish before other can start

How to use RSM for locking?
acquire(l)
while RSM(l) == 1
do nothing

always sets lock to 1

if already locked: harmless

if not locked: locks

 RSM returns 0 iff not already locked
only one of a set of concurrent CPUs will see 0
tidbit: you can implement locks w/ ordinary LOADs and STOREs
i.e. w/o hardware-supported RSM

it's just awkward and slow

look up Dekker's Algorithm

Summary
BB is what you need for client/server on one computer
Concurrent programming is tough
Locks can help make concurrency look more sequential
Watch out for deadlock
 Next: more than one program per CPU

