
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 2009 Lecture 8: Performance

Performance: why am I lecturing about it?
often has huge effect on design
often forces major re-design as loads grow
faster CPUs haven't "solved" performance
problems have grown too, e.g. Internet-scale

disk and net latency hasn't improved

Performance Introduction
 your system is too slow

[diagram: clients, net, server CPU, server disk]

perhaps too many users, and they are complaining

what can you do?
1. measure to find bottleneck

 could be any of the components incl client

you hope to find a dominating bottleneck!

2. relax bottleneck

 increase efficiency or add hardware

Decide what you mean by "performance"
throughput: requests/second (for many users)
latency: time for a single request
sometimes inverses:
 if it takes 0.1 second of CPU, and one CPU, then throughput = 10/sec
often not inverses

 w/ 2 CPUs, latency still 0.1, but throughput 20/sec

queuing and pipelining

I will focus on throughput, appropriate for heavily loaded systems
most systems gets slow as # of users goes up

at first, each new user uses some otherwise idle resources

then they start to queue

[graph: # users, reply/sec, linear up, hits a plateau]

[graph: # users, delay, stays at zero then linear up (queuing delay)]

How to find bottleneck?
 1. measure, perhaps find that e.g. cpu is 100% used

but maybe not, e.g. cpu 50% use and disk 50% used, just at different
times
 2. model

 net should take 10ms, 50ms CPU, 10ms disk

3. profile

tells you where CPU time goes

4. guess

you will probably have to do this anyway

test hypothesis by fixing slowest part of system
can be difficult:
 if disk busy all the time, should you buy a faster disk / two disks?

or more RAM?

You may need to make application logic more efficient
fewer features, better algorithms
I cannot help you with that -- application-specific
but there are general-purpose techniques

The main performance techniques
1. caching
2. I/O concurrency
3. scheduling
4. parallel hardware (two disks, two CPUs, &c)
these are most useful when many waiting requests
but that will often be the case if your server is heavily loaded

I'm going to focus on disk bottlenecks
Every year it gets harder to be CPU-bound
what tricks for good disk performance?

hitachi 7K400: 400 GB. 7200. 8.5ms r seek, 9.2ms w.
567 to 1170 s/t. 10 heads. abt 87000 cylinders.

primer on disks
[disk slide]
physical arrangement
rotating platter: 7,200 RPM, 120/sec, 8.3 ms / rotation
continuous rotation

 circular tracks, 512-byte sectors, about 1000 sectors/track
perhaps 100,000 tracks, concentric rings
multiple platters, 5 for 7K400, so 10 surfaces
cylinder: set of vertically aligned tracks

one disk arm, head per surface, they all move together

can only read from one head at a time

three movements required:
"seek" arm to desired track: varies w/ # tracks, 1 to 15 ms
wait for disk to "rotate" desired sector under head: 0 to 8.3ms
 read bits as they rotate under head at 7200

disk performance?
big multi-track sequential transfers:

one track per rotation

512*1000 / 0.0083

62 megabytes/second

that is fast! unlikely to be a bottleneck for most systems

small transfers, e.g. 5000-byte web page:

from *random* disk location

 seek + rotate + transfer

 avg seek: 9 ms

avg rotate: 1/2 full rotation for random block

transfer: size / 62 MB/sec

9 + 4 + 0.1 = 13.1ms

 rate = 5000 / 0.0131 = 0.4 MB/sec

i.e. 1% of big sequential rate. this is slow.

sadly this is typical of real life

Lesson: lay your data out sequentially on disk!

caching disk blocks
use some of RAM to remember recently read disk blocks
this is often the main purpose of RAM...

your o/s kernel does this for you

table:

 BN DATA

 read(bn):

if block in cache, use it

else:

 evict some block

 read bn from disk

 put bn, block into cache

hit cost: about 0 s to serve a small file from RAM

 miss cost: 0.010 to read a small file from disk

eviction / replacement policies
important: don't want to evict something that's about to be used!
least-recently-used (LRU) usually works well
if it's been used recently, will be used again soon

LRU bad for huge sequential data that doesn't fit

if you read it over and over (or even only once)

if it's been used recently, won't be used again for a while!

don't want to evict other useful stuff from cache

 random? MRU?

how to decide if caching is likely to work?
productive to think about working set size vs cache size
you have 1 GB of data on disk and 0.1 GB of RAM
will that work out well?
 maybe yes:

if small subset used a lot (popular files)

if users focus on just some at a time (only actively logged in users)

if "hit" time << "miss" e.g. disk cache

if disk I/O signif fraction of overall time

maybe no:
if data used only once
if more than 0.1 GB read before re-use (i.e. people read whole GB)
if people read random blocks, then only 10% hit probability
if hit time not much less than miss time
 e.g. caching results of computation

i/o concurrency
what if most requests hit but some have to go to disk?
and you have lots of requests outstanding

[time diagram: short short long short short]

we don't want to hold up everything waiting for disk

idea: process multiple requests concurrently

some can be waiting for disk, others are quicker from cache
can use threads

 note: threads handy here even if only one CPU

special case: prefetch (works w/ only one thread)

special case: write-behind

scheduling
sometimes changing order of execution can increase efficiency
if you have lots of small disk requests waiting
sort by track
results: short seeks (1ms instead of 8ms)
the bigger the backlog, the smaller the average seek
system gets more efficient as load goes up!

higher throughput

 "elevator algorithm"

maybe you can sort rotationally also, but that's hard

cons: unfair -- increases delay for some

if you cannot improve efficiency
buy faster CPU/net/disk if you can
otherwise buy multiple servers (CPUs + disks) -- but how to use?
strict partition of work: easiest
users a-m on server 1 (cpu+disk)

users n-z on server 2 (cpu+disk)

no interaction, so e.g. no need for locks, no races

hard if e.g. some operations involve multiple users -- bank xfers
perhaps factor out computing from storage
front end / back end
front end can get data for all needed users from back end
works well if CPU-bound or FEs can cache

Pragmatics
programmer time costs a lot
hardware is cheap
programming most worthwhile if allows you to use more h/w

show slide
going to look at a quiz question from a few years ago
as practice, and to illustrate performance ideas
quizzes often present some new pretend system, ask lots of
questions about it and effects of changes

worth practicing a bit (old exams), takes some getting used to

OutOfMoney

serving movie files, to clients, over net

single CPU, single disk

each file is 1 GB, split into 8 KB blocks, randomly scattered

Q1: 1153 seconds

seek + half rotation + (8192 / 10 MB/sec)

0.005 + 0.003 + 0.0008 = 0.0088 sec/block
times 131072 = 1153

if layout were better, how long would it take?

mark adds a one-GB whole-file cache

Q2: 1153 seconds

does that mean the caching scheme is bad?

Q3: B

what behavior would we expect to see for each of those reasons if
it were true?

in what circumstance would that caching scheme work well?

how could it be improved?

Threads: what is the point? do we expect threads to help?

Why do we think it is telling us where it calls yield? What is the

significance of those points? (I/O concurrency)

Why might non-pre-emptive be important?

new caching code:

1. 4 GB
 2. reads each block independently: *block* cache, not whole-file

Why might per-block caching be important? Probably second-order, to
fix a bug in the question: that otherwise GET_FILE_FROM_DISK might

prevent all other activity.

Q4: 100% hit rate.

Maybe an artifact of having sent a first non-concurrent request.

What if he had started by sending many requests in parallel?

Q5: Ben is right. One CPU, threads are non-pre-emptive.

What if two CPUs, or pre-emption? Would this lock be enough?

Might need to protect all uses of cache, disk driver, network s/w,

maybe best done inside each of these modules.

Might want to do something to prevent simultaneous disk read of same

block, i.e. make IF, GET, and ADD indivisible. Though a spin-lock is

probably not the right answer. Per-block busy flag, wait(), notify().

Q6: 0.9 * 0 + 0.1 * 1153 = 115.3

Q7: E

The cache is bigger than the total data in use, so no replacement

is ever needed.

