
MIT OpenCourseWare 
http://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Security intro
Nickolai Zeldovich 
============== 

key ideas for today:
key to security is understanding what the attacker can do
principles: reduce trust (least privilege), economy of mechanism 

--- board 1 ---

security / protection
permeates computer system design
if you don't design it right upfront, can be hard to fix later
much like naming, network protocols, atomicity, etc
will affect all of the above 

give examples of security problems
SLIDE: general security stats


critical problems that allow attackers to take control over

windows machines -- about once a week


 SLIDE: not surprising, then, that china controls computers in embassies
SLIDE: even medical devices like pacemakers are vulnerable to attacks 

so what is protection? back to first board 
prevent access by bad guys
allow access by good guys
policies [lots of them, and we can't really cover all possibilities]
[.. so much like with other topics] -> mechanism 

--- board 2 ---

real world vs computer security
same:


lock - encryption

checkpoints - access control

laws, punishment


different: 
attacks are fast, cheap, scalable


~same effort to compromise 1 or 1,000,000 machines

can compromise machines all over the world

no need to physically be present at the machine

no strong notion of identity


global; few laws 

--- board 3 ---

policy goals: positive vs negative
Nickolai can read grades.txt -- easy

why easy? build system, if it doesn't work, keep fixing until it does
John cannot read grades.txt -- hard

seems just the opposite of the above
we can try asking John to log in and try to access grades.txt
not enough: have to quantify all possible ways John might get grades.txt

tries to access the disk storing the file directly
tries to access it via a browser (maybe web server has access?)
tries to read uninitialized memory after Nickolai's editor exits 



 tries to intercept NFS packets that are reading/writing grades.txt

 tries to sell you a malicious copy of Windows
tries to take the physical disk out of server and copy it
tries to steal a copy of printout from the trash
calls the system administrator and pretends to be Nickolai

hard to say "regardless of what happens, John will not get grades.txt"

 not enough to control access via one interface

must ensure all possible access paths are secure


 we've seen some positive goals (e.g. naming) in 6.033 already
some negative goals too (transaction must not be "corrupted")
security is harder because attacker can do many things
with transactions, we knew what's going to happen (crash at any point)
most security problems are such negative goals 

--- board 4 ---

threat model
 the most important thing is to understand what your attacker can do
then you can design your system to defend against these things

 C -> I -> S

 typical setting:
client named Alice, server named Bob
an attacker (router) in the network, Eve, is eavesdropping
alternatively, Lucifer, a malicious adversary, can send, modify packets 

does attacker control the client? server?

 frequent assumption:

no physical, social engineering attacks

only intercept/send messages

might or might not compromise server, client


 this picture applies even on a single machine

processes from diff. users making calls into the OS kernel


 consider costs as well (both security and insecurity have a price)
convenience, HW expense, design, .. 

right side of the board:
basic goals

- authentication [SLIDE: kentucky fax]
- authorization [who is authorized to release prisoners?]
- confidentiality NOTE: quite diff. from authentication!
- auditing
- availability 

--- board 5 ---

policies / mechanisms
hardware: confine user code 

mechanism: virtual memory, supervisor bit 



authentication: kernel initializes page table, supervisor bit
HW knows current state 

authorization: can access any virtual memory address in current PT
cannot access privileged CPU state

Unix: private files

mechanism: processes, user IDs, file permissions

authentication: user password, when user starts a process

authorization: kernel checks file permissions


firewalls: restrict connections

mechanism: packet filtering

authentication: connection establishment

authorization: list of allowed/prohibited connections

seemingly weak mechanism, but surprisingly powerful in practice


bank ATM: can only withdraw from your acct, up to balance

mechanism: app-level checks in server process

authentication: card & PIN

authorization: track account balance


 cryptography: next lectures 

--- board 6 ---

challenges
bugs

hard to build bug-free systems, write perfect code
expect bugs, try to design your system to be secure despite them
in recitation tomorrow, will look at some of these bugs

complete mediation

requires careful design

SLIDE: paymaxx bug


many mechanisms: hard to enforce coherent policy

want to ensure that bank policies are followed

what mechanisms do we have?


 virtual memory isolates processes

kernel, file system implements ACLs

bank ATM implements its own checks

web banking might implement other checks

system used by bank employees has other checks

firewalls at different places in the network


interactions between layers

[caching/timing, naming, memory reuse, network replay]

SLIDE: naming problem with symlink attacks

SLIDE: password checking one character at a time


--- board 7 ---

safety net approach
be paranoid -- make assumptions explicit

attackers will try all possible corner cases
consider the environment 

if you are relying on network security, check for open wireless networks
if you are reusing, relying on another component, make sure it's secure

code meant to run on non-networked system used on the web?

never expected to deal with malicious inputs


consider dynamics of use

suppose only Nickolai should access grades.txt


who can specify permissions for the grades file?




 who can modify editor on Athena? or set permissions on it?
who can control name translation for that file?

 defend in depth
even if you have a server on a "secure" company network, still want
to require passwords. what if someone brings an infected laptop? 

right side of the board:
humans: weakest link 

- UI 
- safe defaults 

--- board 8 ---

design principles
open design, minimize secrets

figure out what's going to differentiate bad guys vs good guys
focus on protecting that, make everything else public
authentication: ID public, sth. that proves you're that ID is secret
SSNs, credit card numbers fail at this

SSNs used both as ID and as credentials for authentication
 unclear what part of credit card number is really secret
some receipts star-out first 12 digits, other star out last 4

economy of mechanism

simple security mechanism

multiple security mechanisms interfere

try hard to reduce security policies to existing mechanisms


design to minimize "impedance mismatch" between security mechanisms
usually a number of app layers between client and real object
right side: diagram: Client-WebApp-FS-Disk
suppose this is paymaxx which stores user tax data
would be great if policy were enforced on obj directly

then wouldn't have to trust the server app code
suppose Obj is file -- mechanism is file permissions

if diff users store their data in 1 file, can't use OS prot
if we carefully design files 1 per user, may be able to use OS

 least privilege: minimize TCB
TCB (trusted computing base)
usually don't want to trust the network (next lectures will show how)
break up your app into small components, each with least needed

privilege 


