6.035 Practice Quiz 1

1. Give a Regular Expression and DFA for:
$L=\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 1 and does not contain the substring 00$\}$
2. Give a RE for: $L=\left\{0^{i} 1^{j} \mid i\right.$ is even and j is odd $\}$
3. Given the NFA for below for $0^{*}(01)^{*} 0^{*}$, construct a DFA:

4. Give a RE and a DFA/NFA for the language of all strings over $\{0,1\}^{*}$ that do not end in 01.
5. Give a RE and a CFG for:
$L=\left\{x \in\{0,1\}^{*} \mid x\right.$ starts and ends with different symbols $\}$
6. Give a CFG for:
$L=\left\{x \in\{0,1\}^{*} \mid\right.$ symbol at position i is same as symbol at position $\mathrm{i}+2$ and $\left.|x| \geq 2\right\}$
7. Give a CFG for the language of all non-palindromes over $\{0,1\}^{*}$.
8. Give a CFG for:
$L=\left\{0^{i} 1^{j} 0^{k} \mid j>i+k\right\}$ So, 001111100 is in the string. Hint, the concatenation of two (or more) context-free languages is context-free.
9. Eliminate left recursion from:
$S \rightarrow A a \mid b$
$A \rightarrow A c|S d| \varepsilon$
10. Give a CFG for $L=\left\{a^{i} b^{i} c^{i} \mid i \geq 1\right\}$.
11. Is this grammar ambiguous? If so, prove it and construct a non-ambiguous grammar that derives the same language.
$S \rightarrow a S|a S b S| c$
12. Assume that we have added a pointer type to decaf that can point to integers and booleans. We want to extend our type system (our attributed grammar) to handle these types. We have added a pointer (t) type to the type system to denote a pointer of type t. Complete the semantic action that propagates the type attribute for a pointer deference expression: $E \rightarrow * E_{1} \quad\{:$ E.type $=? ? ? ?:\}$

Answers

1. $(1 \mid 01)+$

2. $(00)^{*} 1(11)^{*}$
3. DFA:

4. $\varepsilon|0| 1 \mid(0 \mid 1)^{*}(11|00| 10)$

5. $\left[a(a \mid b)^{*} b\right] \mid\left[b(a \mid b)^{*} a\right]$
$S \rightarrow a A b \mid b A a$
$A \rightarrow a A|b A| \varepsilon$
6. $S \rightarrow A|B| C \mid D$
$A \rightarrow 00 A \mid 00$
$B \rightarrow 11 B \mid 11$
$C \rightarrow 10 C \mid 10$
$D \rightarrow 01 D \mid 01$
7. $S \rightarrow 0 S 0|1 S 1| D$
$D \rightarrow 1 A 0 \mid 0 A 1$
$A \rightarrow \varepsilon|0 A| 1 A$
8. $S \rightarrow A B C$
$A \rightarrow 0 A 1 \mid \varepsilon$
$B \rightarrow 1 B \mid 1$
$C \rightarrow 1 C 0 \mid \varepsilon$
L is a concatenation of $L_{1} L_{2} L_{3}$ where $L_{1}=\left\{0^{i} 1^{i} \mid i \geq 0\right\}, L_{2}=\left\{1^{m} \mid m>0\right\}$, and $L_{3}=\left\{1^{k} 0^{k} \mid k \geq 0\right\}$.
9. $S \rightarrow A a \mid b$
$A \rightarrow b d A^{1} \mid A^{1}$
$A^{1} \rightarrow c A^{1}\left|a d A^{1}\right| \varepsilon$
10. Trick question, the language is not context-free. Sorry!
11. It is ambiguous! aacbc has two parse trees (not pictured, but you have to show the two parse trees to prove it is ambiguous).

Unambiguous grammar:
$S \rightarrow T \mid U$
$T \rightarrow a T b T \mid c$
$U \rightarrow a S \mid a T b U$
12. $E \rightarrow * E_{1}\left\{\right.$ E.type $:=$ if E_{1}. type $=\operatorname{pointer}(\mathrm{t})$ then t else type_error $\left.;\right\}$

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

