Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

1. For the basic block:

$$
\begin{aligned}
\mathrm{q} & =3 \\
\mathrm{r} & =10 \\
\mathrm{~s} & =\mathrm{q}+\mathrm{r} \\
\mathrm{t} & =2 * \mathrm{r}+\mathrm{s} \\
\mathrm{t} & =\mathrm{q} \\
\mathrm{u} & =\mathrm{q}+\mathrm{r} \\
\mathrm{v} & =\mathrm{q}+\mathrm{t} \\
\mathrm{w} & =3+\mathrm{x}
\end{aligned}
$$

State for each of the basic blocks on the following page which optimization was performed on the above:

- Constant Propagation/Folding
- Copy Propagation
- Common Subexpression Elimination
- Dead Code Elimination.
(a) $\mathrm{q}=3$
$r=10$
$\mathrm{s}=\mathrm{q}+\mathrm{r}$
$\mathrm{t} 1=\mathrm{s}$
$\mathrm{t}=2 * \mathrm{r}+\mathrm{s}$
$\mathrm{t}=\mathrm{q}$
$\mathrm{u}=\mathrm{t} 1$
$\mathrm{v}=\mathrm{q}+\mathrm{t}$
$\mathrm{w}=3+\mathrm{x}$
(b) $q=3$
$\mathrm{r}=10$
$\mathrm{s}=\mathrm{q}+\mathrm{r}$
$\mathrm{t}=2 * \mathrm{r}+\mathrm{s}$
$\mathrm{t}=\mathrm{q}$
$u=q+r$
$\mathrm{v}=\mathrm{q}+\mathrm{q}$
$\mathrm{w}=3+\mathrm{x}$
(c) $q=3$
$\mathrm{r}=10$
$\mathrm{s}=13$
$t=33$
$t=3$
$\mathrm{u}=13$
v $=36$
w $=3+x$
(d) $\mathrm{q}=3$
$r=10$
$s=q+r$
$\mathrm{t}=\mathrm{q}$
$u=q+r$
$\mathrm{v}=\mathrm{q}+\mathrm{t}$
w $=3+x$

2. In class we discussed available expression dataflow analysis. Recall that an expression e is available at point p if:

- Every path from the initial node to p evaluates e before reaching p , and
- There are no assignments to any operand of e after evaluation but before p.

In the table below, fill in the final values of $\mathbf{I N}$ obtained after performing available expression analysis on the CFG of Figure 1 (next page). A '1' should indicate the expression is available on entry to the block.

	$\mathrm{a}+\mathrm{b}$	$\mathrm{c} * \mathrm{~d}$	e / f
B1	0	0	0
B2			
B3			
B4			
B5			
B6			
B7			

Figure 1: CFG for problem 2.
3. Recall from lecture that a variable v is live at point p if:

- v is used along some path starting at p, and
- There is no definition of v along p before its use.

In the table below, fill in the final values of OUT obtained after performing liveness analysis on the CFG of Figure 2 (next page). A '1' should indicate the variable is live on exit from the block. Assume all variables are visible outside the procedure.

	a	b	c
B1			
B2			
B3			
B4			
B5			
B6			
B7	1	1	1

Figure 2: CFG for problem 3.
4. A compiler hacker writes an analysis to compute values of integer variables in a program. The hacker's analysis maintains a set for each variable at each program point, the set contains the possible values for that variable. The hacker uses set union to combine values at the control-flow join points.
The hacker tests the analysis on several acyclic control flow graphs and it is shipped in the compiler. One of the customers tries to compile a program that contains a loop, and the analysis fails to terminate. What is the problem?

Describe the changes that the compiler hacker must make to fix the analysis.

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

