
MIT 6.035
Specifying Languages with Regular

Expressions and Context-Free Grammars p

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

•

t t t

• s•

g p g (p

Language Definition Problem

• How to precisely define language
L d f l d fi i i • Layered structure of language definition
• Start with a set of letters in language

Lexical tructure identifies “words” in language Lexical structure - identifies words in language
(each word is a sequence of letters)

• Syntactic structure - identifies “sentences” inSyntactic structure identifies sentences in
language (each sentence is a sequence of words)

• Semantics - meaning of program (specifies what
result should be for each input)

• Today’s topic: lexical and syntactic structures

(l i)

c one

Specifying Formal Languages

• Huge Triumph of Computer Science
• Beautiful Theoretical Results
• Practical Techniques and Applications

• Two Dual Notions
• Generative approach

(grammar or regular expression)
• Recognition approach (automaton)

Lots of theorems about onverting approach• Lots of theorems about converting one approach
automatically to another

• n e e rom a p a e•

()

Specifying Lexical Structure Using
Regular ExpressionsRegular Expressions

• Have some alphabet ∑ = set of letters
R l i b ilt f • Regular expressions are built from:
• ε - empty string

A y l tt r f l h b t ∑Any letter from alphabet ∑

• r1r2 – regular expression r1 followed by r2
(sequence)(sequence)

• r1| r2 – either regular expression r1 or r2
(choice)

• r* - iterated sequence and choice ε | r | rr | …
• Parentheses to indicate grouping/precedence

a

(|)(|) (|)

Concept of Regular Expression
Generating a StringGenerating a String

Rewrite regular expression until have only a
sequence of letters (string) leftsequence of letters (string) left

ExampleGener l Rules p
(0 | 1)*.(0|1)*
(0 | 1)(0 | 1)*.(0|1)*

General Rules
1) r1| r2 → r1

1(0|1)*.(0|1)*
1.(0|1)*

2) r1| r2 → r2

3) r* →rr*
1.(0|1)(0|1)*
1.(0|1)

)
4) r* → ε

1.0

1 (0|1)(0|1)*

(|)(|) (|)

Nondeterminism in Generation

• Rewriting is similar to equational reasoning
• But different rule applications may yield different final

results

Example 1 Example 2 p
(0|1)*.(0|1)*
(0|1)(0|1)*.(0|1)*

Example 2
(0|1)*.(0|1)*
(0|1)(0|1)*.(0|1)*

1(0|1)*.(0|1)*
1.(0|1)*

0(0|1)*.(0|1)*
0.(0|1)*

1.(0|1)(0|1)*
1.(0|1)
1 0

0.(0|1)(0|1)*
0.(0|1)
0 1 1.0 0.1

•

Concept of Language Generated by
Regular ExpressionsRegular Expressions

• Set of all strings generated by a regular
expression is language of regular expressionexpression is language of regular expression

• In general, language may be (countably) infinite
String in language is often called a tokenString in language is often called a token •

t

• w even o•

Examples of Languages and Regular
ExpressionsExpressions

• ∑ = { 0, 1, . }
(0|1)* (0|1)* Bi fl ti i b• (0|1)*.(0|1)* - Binary floating point numbers

• (00)* - even-length all-zero strings
1*(01*01*)* strings ith number f1*(01*01*)* - strings with even number of
zeros

• ∑ = { a b c 0 1 2 } ∑ { a,b,c, 0, 1, 2 }
• (a|b|c)(a|b|c|0|1|2)* - alphanumeric

identifiers
• (0|1|2)* - trinary numbers

t t t t t t

Alternate Abstraction
Finite-State AutomataFinite State Automata

• Alphabet ∑

S f ith i iti l d• Set of states with initial and accept states
• Transitions between states, labeled with letters

(0|1)*.(0|1)*

1 Start state1.
Accept state0 0

h l b l l

If d i t t t t t t t i

Automaton Accepting String
Conceptually, run string through automaton

• Have current state and current letter in string
• Start with start state and first letter in string
• At each step, match current letter against a transition

whose label is same as letter
• Continue until reach end of string or match fails
• If end in accept state, automaton accepts string
• Language of automaton is set of strings it accepts

Example
Current state

p

1 1. Start state

0 0

.
Accept state

11.0

Current letterCurrent letter

Examplep
Current state

1 1. Start state

0 0

.
Accept state

11.0

Current letterCurrent letter

Examplep
Current state

1 1. Start state

0 0

.
Accept state

11.0

Current letterCurrent letter

Examplep
Current state

1 1. Start state

0 0

.
Accept state

11.0

Current letterCurrent letter

Examplep
Current state

1 1. Start state

0 0

.
Accept state

11.0

Current letterCurrent letter

Examplep
Current state

1 1. Start state

0 0

.
Accept state

11.0

Current letter

String is accepted!

Current letter

•

h l h ll d ff

a

Generative Versus Recognition

• Regular expressions give you a way to generate
all strings in language

• Automata give you a way to recognize if a specific
string is in language
• Philosophically very different
• Theoretically equivalent (for regular

expressions nd automata) expressions and automata)
• Standard approach

Use regular expressions when define languageUse regular expressions when define language
• Translated automatically into automata for

implementationimplementation

•

• s•

• o c c o•

From Regular Expressions to
AutomataAutomata

• Construction by structural induction
Gi bit l i• Given an arbitrary regular expression r

• Assume we can convert r to an automaton with
One tart state One start state

• One accept state
Show how Show how
an automaton with
• One start stateOne start state
• One accept state

to convert all constructors to deliver

s

Basic Constructs

Accept tate

Start state

ε
ε

Accept state

ε

a
a∈Σ

Sequence

Accept state

Start state

Accept state

r1r2 r1 r21 2 1 2

Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2 r1 r21 2 1 2

Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2 r1 r2
ε

1 2 1 2

Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2

ε
r1 r2

ε
1 2 1 2

Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2

ε
r1 r2

εε
1 2 1 2

Choice

Accept state

Start state

Accept state

r |r
r1

r1|r2

r2

Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1

r1|r2

r2

Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1ε

r1|r2

r2ε

Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1

εε
r1|r2

εr2ε

a s s

Kleene Star

Old ccept tate

Old start state

Accept tate

Start state

Old accept state Accept state

r* r r* r

a s s

Kleene Star

Old ccept tate

Old start state

Accept tate

Start state

Old accept state Accept state

r* r r* r

a s s

Kleene Star

Old ccept tate

Old start state

Accept tate

Start state

Old accept state Accept state

r* r ε ε
r* r

a s s

Kleene Star

Old ccept tate

Old start state

Accept tate

Start state

ε

Old accept state Accept state

r* r εε
r* r

a s s

Kleene Star

Old ccept tate

Old start state

Accept tate

Start state

ε

Old accept state Accept state

r* r εε
r* r

ε

NFA vs. DFA

• DFA

• No ε transitions• No ε transitions
• At most one transition from each state for

each lettereach letter
aa

OK NOT

ab
OK NOT

OK

• NFA – neither restriction

o t s e

Conversions

• Our regular expression to automata conversion
produces an NFAproduces an NFA

• Would like to have a DFA to make recognition
algorithm simplera g p

• Can convert from NFA to DFA (but DFA may be
exponentially larger than NFA)

a om

•

t sta t state

• a a•

a states n

NFA to DFA Construction

• DFA has a state for each subset of states in NFA
• DFA start state corresponds to set of states reachable by following ε

nsitions f NFA transitions from NFA start state
• DFA state is an accept state if an NFA accept state is in its set of NFA

states
To compute the transition for given DFA state D and letter To compute the transition for a given DFA state D and letter a
• Set S to empty set
• Find the set N of D’s NFA states

For ll NFA in N • For all NFA states n in N
– Compute set of states N’ that the NFA may be in after

matching a
Set S to S union N’– Set S to S union N

• If S is nonempty, there is a transition for a from D to the DFA state
that has the set S of NFA states
Otherwise there is no transition for a from D Otherwise, there is no transition for a from D •

NFA to DFA Example for (a|b)*.(a|b)*

1 2

3 5ε
ε

a

7

ε

8
ε

ε

9 10

11 13ε
ε

a

15

ε

16
ε

ε

.
ε

1 2

4 6
b

7

ε

8

ε ε
9 10

12 14
b

15

ε

16

ε

a a.
5,7,2,3,4,8 13,15,10,11,12,16

a . a
a a

a a.

1,2,3,4,8

6 7 2 3 4 8

9,10,11,12,16

14 15 10 11 12 16b . b

a

b

a

b

6,7,2,3,4,8 14,15,10,11,12,16.
bb

d f (b b)

Lexical Structure in Languages

Each language typically has several categories of
words. In a typical programming language:words. In a typical programming language:

• Keywords (if, while)
• Arithmetic Operations (+, -, *, /)
• Integer numbers (1, 2, 45, 67)
• Floating point numbers (1.0, .2, 3.337)
• Identifiers (abc, i, j, ab345)

• Typically have a lexical category for each
keyword and/or each categorykeyword and/or each category

• Each lexical category defined by regexp

• =

Will l i l t i i t l l

Lexical Categories Example

• IfKeyword = if
WhileKeyword = whileWhileKeyword while

• Operator = +|-|*|/
• Integer = [0-9] [0-9]*tege [0 9] [0 9]
• Float = [0-9]*. [0-9]*
• Identifier = [a-z]([a-z]|[0-9])*
• Note that [0-9] = (0|1|2|3|4|5|6|7|8|9)

[a-z] = (a|b|c|…|y|z)
• Will use lexical categories in next level

•

•

•

p p

Programming Language Syntax

• Regular languages suboptimal for specifying
programming language syntaxprogramming language syntax

• Why? Constructs with nested syntax
(a+(b-c))*(d-(x-(y-z)))(a+(b c)) (d (x (y z)))

• if (x < y) if (y < z) a = 5 else a = 6 else a = 7
• Regular languages lack state required to modelRegular languages lack state required to model

nesting
• Canonical example: nested expressions
• No regular expression for language of

parenthesized expressions

•

Solution – Context-Free Grammar

• Set of terminals Op = +|-|*|/
{ Op, Int, Open, Close }
Each terminal defined
b l i

Int = [0-9] [0-9]*
Open = <
Cl >by regular expression

• Set of nonterminals
{ Start Expr }

Close = >

{ Start, Expr }
• Set of productions

• Single nonterminal on LHS
Start → Expr
Expr → Expr Op Exprg

• Sequence of terminals and
nonterminals on RHS

p p p p
Expr → Int
Expr → Open Expr Close

c oose a o te a cu e t st

s s n anguage

Production Game

have a current string
start with Start nonterminalstart with Start nonterminal
loop until no more nonterminals

choose a nonterminal in current stringg
choose a production with nonterminal in LHS
replace nonterminal with RHS of production

substitute regular expressions with corresponding
strings

generated tring i i lgenerated string is in language

Note: different choices produce different stringsNote: different choices produce different strings

3) I t

Sample Derivation

Start
E

Op = +|-|*|/
Int = [0-9] [0-9]* Expr

Expr Op Expr
Open Expr Close Op Expr

Int [0 9] [0 9]
Open = <
Close = >

Open Expr Op Expr Close Op Expr
Open Int Op Expr Close Op Expr
Open Int Op Expr Close Op Int Open Int Op Expr Close Op Int
Open Int Op Int Close Op Int
< 2 - 1 > + 1

1) Start → Expr
2) Expr → Expr Op Expr

E3) Expr → Int
4) Expr → Open Expr Close

• o•

••

Parse Tree

• Internal Nodes: Nonterminals
L T i l• Leaves: Terminals

• Edges:
From Nonterminal f LHS of production From Nonterminal of LHS of production

• To Nodes from RHS of production
Captures derivation of stringCaptures derivation of string

Parse Tree for <2-1>+1
Start

Expr

Expr ExprOp ExprOp
+Open

<
Close

>
Expr

Int< >
1

Op
Expr Expr

-Int
2

Int
11

g y g g y

Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations
(therefore multiple parse trees) for a single string

Derivation and parse tree usually reflect semantics of
the programthe program

Ambi uity in rammar often reflects ambiguity in
semantics of language

(which is considered undesirable)

gg

E

Ambiguity Example

Two parse trees for 2-1+1

Tree corresponding Tree corresponding

Start Start

Tree corresponding
to <2-1>+1 to 2-<1+1>

Expr Expr

Expr ExprOp
+

Int

ExprExpr Op
-

Int
Expr ExprOp

-
Int Int

Int
1 Expr ExprOp

+
Int Int

2

2 1 1 1

,p y p

Eliminating Ambiguity

Solution: hack the grammar

Original Grammar
Start → Expr

Hacked Grammar
Start → Expr

Expr → Expr Op Expr
Expr → Int
E p Open E p Close

Expr → Expr Op Int
Expr → Int
E p Open E p Close

Conceptually, makes all operators associate to left

Expr → Open Expr Close Expr → Open Expr Close

Op
-

t
Op

t tInt t

Parse Trees for Hacked Grammar
Only one parse tree for 2-1+1!

Start Start

Valid parse tree No longer valid parse tree

Expr Expr

Expr Op
+

Int
1

ExprExpr

In
Expr Op

-
Int

Int
1

Expr Expr
+

In In

Int
2

2
Int
1

In
1

t +

2

Precedence Violations

• All operators associate to left
Vi l d f *

Parse tree for
2 3*4 • Violates precedence of * over +

• 2-3*4 associates like <2-3>*4 Start

Expr

2-3*4

Expr

Expr Op Int Expr Op
*

Expr Op Int

Int
4

p p
-

Int
2

Int
3

→ →

Hacking Around Precedence

Original Grammar
Op = +|-|*|/

Hacked Grammar
AddOp = +|-

Int = [0-9] [0-9]*
Open = <

MulOp = *|/
Int = [0-9] [0-9]*

Close = >

Start Expr

Open = <
Close = >
Start ExprStart → Expr

Expr → Expr Op Int
Expr → Int

Start → Expr
Expr → Expr AddOp Term
Expr → TermExpr → Int

Expr → Open Expr Close
Expr → Term
Term → Term MulOp Num
Term → Num
Num → Int
Num → Open Expr Close

f 2 3*4

I

2

Parse Tree Changes

Old parse tree
Start

New parse tree
for 2-3*4

Start
for 2-3*4 Start

Expr

Expr

Expr Op

Expr AddOp
-

Term
Expr Op

*

Expr Op Int

Int
4 Term

Term MulOp
*

Num
Num Expr Op

-
Int
2

Int
3 Int

4

Num

Int
Num

2 2 Int
3

t t t t

• or•

• or a•

General Idea

• Group Operators into Precedence Levels
* d / l l bi d• * and / are at top level, bind strongest

• + and - are at next level, bind next strongest
Nonterminal f each Precedence Level Nonterminal for each Precedence Level
• Term is nonterminal for * and /

Expr is nonterminal + Expr is nonterminal + -
• Can make operators left or right associative

within each levelwithin each level
• Generalizes for arbitrary levels of precedence

andfor

y

Parser
• Converts program into a parse tree
• Can be written by hand
• Or produced automatically by parser generator

• Accepts a grammar as input
• Produces a parser as output

• Practical problem
• Parse tree for hacked grammar is complicated
• Would like to start with more intuitive parse tree

•

t t t t t ”

Solution

• Abstract versus Concrete Syntax
Ab d “i iti ”• Abstract syntax corresponds to “intuitive way
of thinking of structure of program
• Omits details like superfluous keywords thatOmits details like superfluous keywords that

are there to make the language
unambiguous

• Abstract syntax may be ambiguous
• Concrete Syntax corresponds to full grammar

used to parse the language
• Parsers are often written to produce abstract

syntax treessyntax trees.

t t

••

Abstract Syntax Trees

• Start with intuitive but ambiguous grammar
H k k i bi • Hack grammar to make it unambiguous
• Concrete parse trees

Less intuitiveLess intuitive
• Convert concrete parse trees to abstract syntax

treestrees
• Correspond to intuitive grammar for language
• Simpler for program to manipulateSimpler for program to manipulate

==

St t E

t

ExampleHacked Unambiguous
GrammarGrammar

AddOp = +|-
MulOp = *|/
Int [0 9] [0 9]*

Intuitive but Ambiguous
Grammar

Int [0-9] [0-9]*
Open = <
Close = >

Op = *|/|+|-
Int = [0-9] [0-9]*
Sta E p

Start → Expr
Expr → Expr AddOp Term
Expr → Term

Start → Expr
Expr → Expr Op Expr
Expr → Int

Term → Term MulOp Num
Term → Num
Num → Int Expr → Int
Num → Open Expr Close

•

p

t

Concrete parse
tree

Start
Abstract syntax

tree tree
for <2-3>*4

Expr

Expr Op Expr

tree
for <2-3>*4

Start Expr
*

Expr
Op

Expr

Int
4

Expr

Start

Expr

-Int
2

4
Int
3Expr AddOp

-
Term

• Uses intuitive
grammar

• Eliminates superfluous

Term
Term MulOp

*
Num

Num Eliminates superfluous
terminals
• Open

Int
4

Num

Int
2

Num

In
• Close

2 Int
3

Start
Abstract parse tree Further simplified Start

Expr
Expr

Abstract parse tree
for <2-3>*4

Further simplified
abstract syntax

tree

Expr Op
*

OI

Int
4

I

Expr Op
*

Expr

Expr

IntExpr

for <2-3>*4

Op
-

Int
2

Int
3

Expr
Op
-Int

2

Int
4

Expr

Int
32 3

•

t t

• a•

••

Summary

• Lexical and Syntactic Levels of Structure
L i l l i d• Lexical – regular expressions and automata

• Syntactic – grammars
Grammar mbiguitiesGrammar ambiguities
• Hacked grammars

Abstract syntax treesAbstract syntax trees
• Generation versus Recognition Approaches

Generation more convenient for specificationGeneration more convenient for specification
• Recognition required in implementation

•

Handling If Then Else

Start → Stat
Stat → if Expr then Stat else StatStat → if Expr then Stat else Stat
Stat → if Expr then Stat
Stat → ...

Parse Trees

• Consider Statement if e1 then if e2 then s1 else s2

2 1 2

Stat Two Parse Trees

if Expr Stat

if Expr Stat elsee1 Statthen

e2 s1 s2Stat

if Expr Stat else Statthenif Expr Stat else

e1

Stat

s2

Which is
correct?

then

if Expr

e2

s1then

e2

Alternative Readings

• Parse Tree Number 1
ifif e1

if e2 s1
Grammar is ambiguous else s2

• Parse Tree Number 2

Grammar is ambiguous

if e1

if e2 s1
else s2

→

Hack ed Gr ammar

Goal → Stat
Stat → WithElseStat → WithElse
Stat → LastElse
WithElse → if Expr then WithElse else WithElse
WithElse → <statements without if then or if then else>
LastElse → if Expr then Stat
LastElse if Expr then WithElse else LastElseLastElse → if Expr then WithElse else LastElse

Hacked Grammar

• Basic Idea: control carefully where an if without
an else can occuran else can occur
• Either at top level of statement
• Or as very last in a sequence of if then else if• Or as very last in a sequence of if then else if

then ... statements

•

•

t

p p p

Grammar Vocabulary

• Leftmost derivation
Al d l ft i i• Always expands leftmost remaining
nonterminal

• Similarly for rightmost derivationSimilarly for rightmost derivation
• Sentential form

• Partially or fully derived string from a step inPartially or fully derived string from a step in
valid derivation

• 0 + Expr Op Expr
• 0 + Expr - 2

Defining a Language

• Grammar
• Generative approachGenerative approach
• All strings that grammar generates (How many are

there for grammar in previous example?)
• Automaton

• Recognition approach
• All strings that automaton accepts

• Different flavors of grammars and automata
• In general, grammars and automata correspond

•

••

• s•

Regular Languages

• Automaton Characterization
(S A F)• (S,A,F,s0,sF)

• Finite set of states S
Finite Alphabet AFinite Alphabet A

• Transition function F : S ×A → S
Start tate sStart state s0

• Final states sF

• Lanuage is set of strings accepted by AutomatonLanuage is set of strings accepted by Automaton

• o•

Regular Languages

• Regular Grammar Characterization
(T NT S P)• (T,NT,S,P)

• Finite set of Terminals T
Finite set f Nonterminals NTFinite set of Nonterminals NT

• Start Nonterminal S (goal symbol, start
symbol)symbol)

• Finite set of Productions P: NT → T U NT U T
NT

• Language is set of strings generated by grammar

rammar

g

Grammar and Automata
CorrespondenceCorrespondence

Grammar
Regular

Automaton
Finite State Automaton Regular

Context-Free Grammar
Context-Sensitive Grammar

Finite-State Automaton
Push-Down Automaton

Turing Machine

Grammar

• o•

Context-Free Grammars

• Grammar Characterization
(T NT S P)• (T,NT,S,P)

• Finite set of Terminals T
Finite set f Nonterminals NTFinite set of Nonterminals NT

• Start Nonterminal S (goal symbol, start
symbol)symbol)

• Finite set of Productions P: NT → (T | NT)*
• RHS of production can have any sequence ofRHS of production can have any sequence of

terminals or nonterminals

•

••

• s•

Push-Down Automata

• DFA Plus a Stack
(S A V F)• (S,A,V, F,s0,sF)

• Finite set of states S
Finite Input Alphabet A Stack Alphabet VFinite Input Alphabet A, Stack Alphabet V

• Transition relation F : S ×(A U{ε})×V → S × V*
Start tate sStart state s0

• Final states sF

• Each configuration consists of a state a stack Each configuration consists of a state, a stack,
and remaining input string

t t

CFG Versus PDA

• CFGs and PDAs are of equivalent power
G I l i M h i• Grammar Implementation Mechanism:
• Translate CFG to PDA, then use PDA to parse

input stringinput string
• Foundation for bottom-up parser generators

•

•

Context-Sensitive Grammars and
Turing MachinesTuring Machines

• Context-Sensitive Grammars Allow Productions to
Use ContextUse Context
• P: (T.NT)+ → (T.NT)*

• Turing Machines HaveTuring Machines Have
• Finite State Control
• Two-Way Tape Instead of A StackTwo Way Tape Instead of A Stack

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

