MIT 6.035
 Specifying Languages with Regular Expressions and Context-Free Grammars

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology

Language Definition Problem

- How to precisely define language
- Layered structure of language definition
- Start with a set of letters in language Lexical structure - identifies "words" in language (each word is a sequence of letters)
- Syntactic structure - identifies "sentences" in language (each sentence is a sequence of words)
- Semantics - meaning of program (specifies what result should be for each input)
- Today's topic: lexical and syntactic structures

Specifying Formal Languages

- Huge Triumph of Computer Science
- Beautiful Theoretical Results
- Practical Techniques and Applications
- Two Dual Notions
- Generative approach
(grammar or regular expression)
- Recognition approach (automaton)
- Lots of theorems about converting one approach automatically to another

Specifying Lexical Structure Using Regular Expressions

- Have some alphabet $\sum=$ set of letters
- Regular expressions are built from:
- ε - empty string

Any letter from alphabet Σ

- $r_{1} r_{2}$ - regular expression r_{1} followed by r_{2} (sequence)
- $r_{1} \mid r_{2}$ - either regular expression r_{1} or r_{2} (choice)
- r* - iterated sequence and choice ε | r|rr|...
- Parentheses to indicate grouping/precedence

Concept of Regular Expression Generating a String

Rewrite regular expression until have only a sequence of letters (string) left

General Rules

1) $r_{1} \mid r_{2} \rightarrow r_{1}$
2) $r_{1} \mid r_{2} \rightarrow r_{2}$
3) $r^{*} \rightarrow r r^{*}$
4) $r^{*} \rightarrow \varepsilon$

Example
(0 | 1)*.(0|1)*
(0| 1)(0| 1)*.(0|1)*
1(0|1)*.(0|1)*
1.(0|1)*
1.(0|1)(0|1)*
1.(0|1)
1.0

Nondeterminism in Generation

- Rewriting is similar to equational reasoning
- But different rule applications may yield different final results

Example 1 (0|1)*.(0|1)* (0| 1)(0|1)*.(0|1)* 1(0|1)*.(0|1)*
1.(0| 1)*
1.(0|1)(0|1)*
1.(0| 1)
1.0

Example 2
(0|1)*.(0|1)*
(0| 1)(0| 1)*.(0| 1)*
O(0|1)*.(0|1)*
O.(0| 1)*
0.(0| 1)(0| 1)*
O.(0| 1)
0.1

Concept of Language Generated by Regular Expressions

- Set of all strings generated by a regular expression is language of regular expression
- In general, language may be (countably) infinite
- String in language is often called a token

Examples of Languages and Regular Expressions

- $\Sigma=\{0,1,$.
-(0|1)*.(0|1)* - Binary floating point numbers
- (00)* - even-length all-zero strings 1*(01*01*)* - strings with even number of zeros
- $\sum=\{a, b, c, 0,1,2\}$
- (a|b|c)(a|b|c|0|1|2)* - alphanumeric identifiers
-(0|1|2)* - trinary numbers

Alternate Abstraction Finite-State Automata

- Alphabet \sum
- Set of states with initial and accept states
- Transitions between states, labeled with letters

$$
(0 \mid 1)^{*} .(0 \mid 1)^{*}
$$

Start state

Accept state

Automaton Accepting String

Conceptually, run string through automaton

- Have current state and current letter in string
- Start with start state and first letter in string
- At each step, match current letter against a transition whose label is same as letter
- Continue until reach end of string or match fails
- If end in accept state, automaton accepts string
- Language of automaton is set of strings it accepts

Example

Current state

$$
\uparrow^{11.0}
$$

Current letter

Example

Current state

11.0

Current letter

Example

Current state

Start state

Accept state
11.0

Current letter

Example

Current state

Start state

Accept state

11.0

Current letter

Example

Current state

Start state

Accept state
11. ${ }_{\uparrow}$

Current letter

Example

Current state

Start state

Accept state
11.0

String is accepted!

Current letter

Generative Versus Recognition

- Regular expressions give you a way to generate all strings in language
- Automata give you a way to recognize if a specific string is in language
- Philosophically very different
- Theoretically equivalent (for regular expressions and automata)
- Standard approach
- Use regular expressions when define language
- Translated automatically into automata for implementation

From Regular Expressions to Automata

- Construction by structural induction
- Given an arbitrary regular expression r
- Assume we can convert r to an automaton with One start state
- One accept state

Show how to convert all constructors to deliver an automaton with

- One start state
- One accept state

Basic Constructs

Sequence

Start state
$r_{1} r_{2}$

Sequence

Old start state
O
Start state
O Old accept state
Accept state

Sequence

Old start state
O
Start state
O Old accept state
Accept state

Sequence

Old start state
O
Start state
O Old accept state
Accept state
$r_{1} r_{2}$

0

Sequence

Old start state
O
Start state
O Old accept state
Accept state
$r_{1} r_{2}$

Choice

Start state
O Accept state
$r_{1} \mid r_{2}$

Choice

Old start state
Start state
Old accept state Accept state

Choice

Old start state \quad Start state
Old accept state \quad Accept state

Choice

Old start state \quad Start state
Old accept state \quad Accept state

Kleene Star

Old start state
Start state
Old accept state
Accept state

Kleene Star

Old start state
Start state
Old accept state
Accept state

Kleene Star

O old start state
Start state
Old accept state
Accept state

Kleene Star

Old start state \quad Start state
Old accept state \bigcirc Accept state

Kleene Star

Old start state \bigcirc start state
Old accept state \bigcirc Accept state

ε

NFA vs. DFA

- DFA
- No ε transitions
- At most one transition from each state for each letter

- NFA - neither restriction

Conversions

- Our regular expression to automata conversion produces an NFA
- Would like to have a DFA to make recognition algorithm simpler
- Can convert from NFA to DFA (but DFA may be exponentially larger than NFA)

NFA to DFA Construction

- DFA has a state for each subset of states in NFA
- DFA start state corresponds to set of states reachable by following ε transitions from NFA start state
- DFA state is an accept state if an NFA accept state is in its set of NFA states
To compute the transition for a given DFA state D and letter a
- Set S to empty set
- Find the set N of D's NFA states
- For all NFA states n in N
- Compute set of states N' that the NFA may be in after matching a
- Set S to S union N^{\prime}
- If S is nonempty, there is a transition for a from D to the DFA state that has the set S of NFA states
- Otherwise, there is no transition for a from D

NFA to DFA Example for (a|b)*.(a|b)*

Lexical Structure in Languages

Each language typically has several categories of words. In a typical programming language:

- Keywords (if, while)
- Arithmetic Operations (+, -, *, /)
- Integer numbers (1, 2, 45, 67)
- Floating point numbers (1.0, .2, 3.337)
- Identifiers (abc, i, j, ab345)
- Typically have a lexical category for each keyword and/or each category
- Each lexical category defined by regexp

Lexical Categories Example

- IfKeyword = if
- WhileKeyword - while
- Operator $=+|-|*| /$
- Integer = [0-9] [0-9]*
- Float = [0-9]*. [0-9]*
- Identifier $=[a-z]([a-z] \mid[0-9]) *$
- Note that $[0-9]=(0|1| 2|3| 4|5| 6|7| 8 \mid 9)$

$$
[\mathrm{a}-\mathrm{z}]=(\mathrm{a}|\mathrm{~b}| \mathrm{c}|\ldots| \mathrm{y} \mid \mathrm{z})
$$

- Will use lexical categories in next level

Programming Language Syntax

- Regular languages suboptimal for specifying programming language syntax
- Why? Constructs with nested syntax
- $(a+(b-c))^{*}(d-(x-(y-z)))$
- if $(x<y)$ if $(y<z) a=5$ else $a=6$ else $a=7$
- Regular languages lack state required to model nesting
- Canonical example: nested expressions
- No regular expression for language of parenthesized expressions

Solution - Context-Free Grammar

- Set of terminals \{ Op, Int, Open, Close \}
Each terminal defined by regular expression
- Set of nonterminals \{ Start, Expr \}
- Set of productions
- Single nonterminal on LHS
- Sequence of terminals and nonterminals on RHS
$\mathrm{Op}=+|-|*| /$
Int $=[0-9][0-9]^{*}$
Open $=<$
Close $=>$

Start \rightarrow Expr
Expr \rightarrow Expr Op Expr
Expr \rightarrow Int
Expr \rightarrow Open Expr Close

Production Game

have a current string
start with Start nonterminal
loop until no more nonterminals choose a nonterminal in current string choose a production with nonterminal in LHS replace nonterminal with RHS of production
substitute regular expressions with corresponding strings
generated string is in language
Note: different choices produce different strings

Sample Derivation

$\mathrm{Op}=+|-|*| /$
Int $=[0-9][0-9]^{*}$
Start
Open $=<$
Close = >

1) Start \rightarrow Expor
2) Expr \rightarrow ExprOp Expr <2-1>+1
3) Expor \rightarrow Int
4) Expr \rightarrow Open ExporClose

Parse Tree

- Internal Nodes: Nonterminals
- Leaves: Terminals
- Edges:

From Nonterminal of LHS of production

- To Nodes from RHS of production

Captures derivation of string

Parse Tree for $<2-1>+1$

Start \downarrow

Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations (therefore multiple parse trees) for a single string

Derivation and parse tree usually reflect semantics of the program

Ambiguity in g rammar often reflects ambiguity in semantics of language (which is considered undesirable)

Ambiguity Example

Two parse trees for 2-1+1
Tree corresponding

Tree corresponding to $2-<1+1>$

Eliminating Ambiguity

Solution: hack the grammar

Original Grammar
Start \rightarrow Expr
Expr \rightarrow Expr Op Expr
Expr \rightarrow Int
Expr \rightarrow Open Expr Close

Hacked Grammar
Start \rightarrow Expr
Expr \rightarrow Expr Op Int Expr \rightarrow Int
Expr \rightarrow Open Expr Close

Conceptually, makes all operators associate to left

Parse Trees for Hacked Grammar

Only one parse tree for 2-1+1!

Valid parse tree

No longer valid parse tree

Precedence Violations

- All operators associate to left
- Violates precedence of * over +
- 2-3*4 associates like $<2-3>* 4$

Parse tree for
2-3*4
Start \downarrow

Hacking Around Precedence

Original Grammar

Hacked Grammar

Op $=+|-|*| /$
Int $=$ [0-9] [0-9]*
Open $=<$
Close $=>$

Start \rightarrow Expr
Expr \rightarrow Expr Op Int
Expr \rightarrow Int
Expr \rightarrow Open Expr Close

Open $=<$
Close $=>$
AddOp $=+\mid-$
MulOp $=* \mid /$
Int $=$ [0-9] [0-9]*

Start \rightarrow Expr
Expr \rightarrow Expr AddOp Term
Expr \rightarrow Term
Term \rightarrow Term MulOp Num
Term \rightarrow Num
Num \rightarrow Int
Num \rightarrow Open Expr Close

Parse Tree Changes

General Idea

- Group Operators into Precedence Levels
- * and / are at top level, bind strongest
- + and - are at next level, bind next strongest Nonterminal for each Precedence Level
- Termis nonterminal for * and /

Expr is nonterminal for + and -

- Can make operators left or right associative within each level
- Generalizes for arbitrary levels of precedence

Parser

- Converts program into a parse tree
- Can be written by hand
- Or produced automatically by parser generator
- Accepts a grammar as input
- Produces a parser as output
- Practical problem
- Parse tree for hacked grammar is complicated
- Would like to start with more intuitive parse tree

Solution

- Abstract versus Concrete Syntax
- Abstract syntax corresponds to "intuitive" way of thinking of structure of program
- Omits details like superfluous keywords that are there to make the language unambiguous
- Abstract syntax may be ambiguous
- Concrete Syntax corresponds to full grammar used to parse the language
- Parsers are often written to produce abstract syntax trees.

Abstract Syntax Trees

- Start with intuitive but ambiguous grammar
- Hack grammar to make it unambiguous
- Concrete parse trees

Less intuitive

- Convert concrete parse trees to abstract syntax trees
- Correspond to intuitive grammar for language
- Simpler for program to manipulate

Hacked Unambiguous

Grammar

$$
\begin{aligned}
& \text { AddOp }=+\mid- \\
& \text { MulOp }=* \mid / \\
& \text { Int } \quad[0-9][0-9]^{*} \\
& \text { Open }=< \\
& \text { Close }=> \\
& \text { Start } \rightarrow \text { Expr } \\
& \text { Expr } \rightarrow \text { Expr AddOp Term } \\
& \text { Expr } \rightarrow \text { Term } \\
& \text { Term } \rightarrow \text { Term MulOp Num } \\
& \text { Term } \rightarrow \text { Num } \\
& \text { Num } \rightarrow \text { Int } \\
& \text { Num } \rightarrow \text { Open Expr Close }
\end{aligned}
$$

Example

Intuitive but Ambiguous Grammar
$\mathrm{Op}=*|/|+|-$
Int $=[0-9][0-9]^{*}$
Start \rightarrow Expr
Expr \rightarrow ExprOp Expr
Expr \rightarrow Int

- Uses intuitive grammar
- Eliminates superfluous terminals
- Open
- Close

$\begin{array}{cccc}\text { Further simplified } \\ \text { abstract syntax } \\ \text { tree } & \downarrow\end{array}$

Summary

- Lexical and Syntactic Levels of Structure
- Lexical - regular expressions and automata
- Syntactic - grammars

Grammar ambiguities

- Hacked grammars

Abstract syntax trees

- Generation versus Recognition Approaches
- Generation more convenient for specification
- Recognition required in implementation

Handling If Then Else

Start \rightarrow Stat
Stat \rightarrow if Exporthen Stat else Stat
Stat \rightarrow if Exprthen Stat
Stat \rightarrow...

Parse Trees

- Consider Statement if e_{1} then if e_{2} then s_{1} else s_{2}

Alternative Readings

- Parse Tree Number 1 if e_{1}

$$
\begin{aligned}
& \text { if } e_{2} s_{1} \\
& \text { else } s_{2}
\end{aligned}
$$

Grammar is ambiguous

- Parse Tree Number 2
if e_{1}

$$
\text { if } e_{2} s_{1}
$$

else s_{2}

Hacked Grammar

Goal \rightarrow Stat
Stat \rightarrow WithElse
Stat \rightarrow LastEIse
WithElse \rightarrow if Expr then WithElse else WithElse
WithE/se \rightarrow <statements without if then or if then else>
LastElse \rightarrow if Expr then Stat
LastElse \rightarrow if Exprthen WithElse else LastElse

Hacked Grammar

- Basic Idea: control carefully where an if without an else can occur
- Either at top level of statement
- Or as very last in a sequence of if then else if then ... statements

Grammar Vocabulary

- Leftmost derivation
- Always expands leftmost remaining nonterminal
- Similarly for rightmost derivation
- Sentential form
- Partially or fully derived string from a step in valid derivation
- 0 + Expr Op Expr
- $0+$ Expr - 2

Defining a Language

- Grammar
- Generative approach
- All strings that grammar generates (How many are there for grammar in previous example?)
- Automaton
- Recognition approach
- All strings that automaton accepts
- Different flavors of grammars and automata
- In general, grammars and automata correspond

Regular Languages

- Automaton Characterization
- $\left(S, A, F, S_{O} S_{F}\right)$
- Finite set of states S

Finite Alphabet A

- Transition function $F: S \times A \rightarrow S$

Start state S_{0}

- Final states S_{F}
- Lanuage is set of strings accepted by Automaton

Regular Languages

- Regular Grammar Characterization
- (T, NT, S, P)
- Finite set of Terminals T

Finite set of Nonterminals NT

- Start Nonterminal S (goal symbol, start symbol)
- Finite set of Productions P: NT \rightarrow TU NTU T NT
- Language is set of strings generated by grammar

Grammar and Automata Correspondence

Grammar
Regular Grammar
Context-Free Grammar
Context-Sensitive Grammar

Automaton
Finite-State Automaton
Push-Down Automaton
Turing Machine

Context-Free Grammars

- Grammar Characterization
- (T,NT,S,P)
- Finite set of Terminals T

Finite set of Nonterminals NT

- Start Nonterminal S (goal symbol, start symbol)
- Finite set of Productions P: NT \rightarrow ($T / N T)^{*}$
- RHS of production can have any sequence of terminals or nonterminals

Push-Down Automata

- DFA Plus a Stack
- ($\left.S, A, V, F, S_{0} S_{F}\right)$
- Finite set of states S

Finite Input Alphabet A, Stack Alphabet V

- Transition relation $F: S \times(A \cup\{\varepsilon\}) \times V \rightarrow S \times V^{*}$ Start state S_{0}
- Final states S_{F}
- Each configuration consists of a state, a stack, and remaining input string

CFG Versus PDA

- CFGs and PDAs are of equivalent power
- Grammar Implementation Mechanism:
- Translate CFG to PDA, then use PDA to parse input string
- Foundation for bottom-up parser generators

Context-Sensitive Grammars and Turing Machines

- Context-Sensitive Grammars Allow Productions to Use Context
- P: (T.NT) $+\rightarrow$ (T.NT)*
- Turing Machines Have
- Finite State Control
- Two-Way Tape I nstead of A Stack

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

