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Language Definition Problem 

• How to precisely define language 
L  d  f  l  d  fi  i  i  • Layered structure of language definition 
• Start with a set of letters in language 

Lexical tructure identifies “words” in language Lexical structure - identifies words in language 
(each word is a sequence of letters) 

• Syntactic structure - identifies “sentences” inSyntactic structure identifies sentences in 
language (each sentence is a sequence of words) 

• Semantics - meaning of program (specifies what 
result should be for each input) 

• Today’s topic: lexical and syntactic structures 
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Specifying Formal Languages 

• Huge Triumph of Computer Science 
• Beautiful Theoretical Results 
• Practical Techniques and Applications 

• Two Dual Notions 
• Generative approach 

(grammar or regular expression) 
• Recognition approach (automaton) 

Lots of theorems about onverting approach• Lots of theorems about converting one approach 
automatically to another 
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Specifying Lexical Structure Using 
Regular ExpressionsRegular Expressions 

• Have some alphabet ∑ = set of letters 
R l i b ilt f • Regular expressions are built from: 
• ε - empty string  

A  y l  tt  r f  l  h  b  t  ∑Any letter from alphabet ∑ 

• r1r2 – regular expression r1 followed by r2 
(sequence)(sequence) 

• r1| r2 – either regular expression r1 or r2 
(choice) 

• r* - iterated sequence and choice ε | r | rr | … 
• Parentheses to indicate grouping/precedence 



a

( | )( | ) ( | )

Concept of Regular Expression 
Generating a StringGenerating a String 

Rewrite regular expression until have only a 
sequence of letters (string) leftsequence of letters (string) left 

ExampleGener l Rules p 
(0 | 1)*.(0|1)* 
(0 | 1)(0 | 1)*.(0|1)* 

General Rules 
1) r1| r2 → r1 

1(0|1)*.(0|1)* 
1.(0|1)* 

2) r1| r2 → r2 

3) r* →rr* 
1.(0|1)(0|1)* 
1.(0|1) 

) 
4) r* → ε  

1.0 
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Nondeterminism in Generation 

• Rewriting is similar to equational reasoning 
• But different rule applications may yield different final 

results 

Example 1 Example 2 p 
(0|1)*.(0|1)* 
(0|1)(0|1)*.(0|1)* 

Example 2 
(0|1)*.(0|1)* 
(0|1)(0|1)*.(0|1)* 

1(0|1)*.(0|1)* 
1.(0|1)* 

0(0|1)*.(0|1)* 
0.(0|1)* 

1.(0|1)(0|1)* 
1.(0|1) 
1 0  

0.(0|1)(0|1)* 
0.(0|1) 
0 1  1.0 0.1 
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Concept of Language Generated by 
Regular ExpressionsRegular Expressions 

• Set of all strings generated by a regular 
expression is language of regular expressionexpression is language of regular expression 

• In general, language may be (countably) infinite 
String in language is often called a tokenString in language is often called a token • 
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Examples of Languages and Regular 
ExpressionsExpressions 

• ∑ = { 0, 1, . } 
(0|1)* (0|1)* Bi fl ti i b• (0|1)*.(0|1)* - Binary floating point numbers 

• (00)* - even-length all-zero strings 
1*(01*01*)* strings ith number f1*(01*01*)* - strings with even number of 
zeros 

• ∑ = { a  b  c  0  1  2 }  ∑ { a,b,c, 0, 1, 2 } 
• (a|b|c)(a|b|c|0|1|2)* - alphanumeric 

identifiers 
• (0|1|2)* - trinary numbers 
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Alternate Abstraction 
Finite-State AutomataFinite State Automata 

• Alphabet  ∑ 

S f ith i iti l d• Set of states with initial and accept states 
• Transitions between states, labeled with letters 

(0|1)*.(0|1)* 

1 Start state1. 
Accept state0 0 



h l b l l

If d i t t t t t t t i

Automaton Accepting String 
Conceptually, run string through automaton 

• Have current state and current letter in string 
• Start with start state and first letter in string 
• At each step, match current letter against a transition 

whose label is same as letter 
• Continue until reach end of string or match fails 
• If end in accept state, automaton accepts string 
• Language of automaton is set of strings it accepts 



Example 
Current state 

p 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letterCurrent letter 



Examplep
Current state 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letterCurrent letter 
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Current state 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letterCurrent letter 
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Current state 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letterCurrent letter 
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Current state 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letterCurrent letter 



Examplep
Current state 

1 1. Start state 

0 0 

. 
Accept state 

11.0 

Current letter 

String is accepted! 

Current letter 
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Generative Versus Recognition 

• Regular expressions give you a way to generate 
all strings in language 

• Automata give you a way to recognize if a specific 
string is in language 
• Philosophically very different 
• Theoretically equivalent (for regular 

expressions nd automata) expressions and automata) 
• Standard approach 

Use regular expressions when define languageUse regular expressions when define language 
• Translated automatically into automata for 

implementationimplementation 

• 
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From Regular Expressions to 
AutomataAutomata 

• Construction by structural induction 
Gi bit l i• Given an arbitrary regular expression r 

• Assume we can convert r to an automaton with 
One tart state One start state 

• One accept state 
Show how Show how 
an automaton with 
• One start stateOne start state 
• One accept state 

to convert all constructors to deliver
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Basic Constructs 

Accept tate 

Start state 

ε 
ε 

Accept state 

ε 

a 
a∈Σ 



Sequence

Accept state

Start state

Accept state

r1r2 r1 r21 2 1 2



Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2 r1 r21 2 1 2



Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2 r1 r2
ε

1 2 1 2



Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2

ε
r1 r2

ε
1 2 1 2



Sequence

Accept state

Start state

Old accept state

Old start state

Accept stateOld accept state

r1r2

ε
r1 r2

εε
1 2 1 2



Choice

Accept state

Start state

Accept state

r |r
r1

r1|r2

r2



Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1

r1|r2

r2



Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1ε

r1|r2

r2ε



Choice

Old accept state

Old start state

Accept state

Start state

Old accept state Accept state

r |r
r1

εε
r1|r2

εr2ε



a s s

Kleene Star 

Old ccept tate 

Old start state 

Accept tate 

Start state 

Old accept state Accept state 

r* r r* r 
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Kleene Star 

Old ccept tate 

Old start state 

Accept tate 

Start state 

Old accept state Accept state 

r* r r* r 
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Kleene Star 

Old ccept tate 

Old start state 

Accept tate 

Start state 

Old accept state Accept state 

r* r ε ε 
r* r 
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Kleene Star 

Old ccept tate 

Old start state 

Accept tate 

Start state 

ε 

Old accept state Accept state 

r* r εε 
r* r 
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Kleene Star 

Old ccept tate 

Old start state 

Accept tate 

Start state 

ε 

Old accept state Accept state 

r* r εε 
r* r 

ε 



NFA vs. DFA

• DFA

• No ε transitions• No ε transitions
• At most one transition from each state for 

each lettereach letter
aa

OK NOT

ab
OK NOT

OK

• NFA – neither restriction
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Conversions 

• Our regular expression to automata conversion 
produces an NFAproduces an NFA 

• Would like to have a DFA to make recognition 
algorithm simplera g  p  

• Can convert from NFA to DFA (but DFA may be 
exponentially larger than NFA) 
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NFA to DFA Construction 

• DFA has a state for each subset of states in NFA 
• DFA start state corresponds to set of states reachable by following ε 

nsitions f NFA transitions from NFA start state 
• DFA state is an accept state if an NFA accept state is in its set of NFA 

states 
To compute the transition for given DFA state D and letter To compute the transition for a given DFA state D and letter a 
• Set S to empty set 
• Find the set N of D’s NFA states 

For ll NFA in N • For all NFA states n in N 
– Compute set of states N’ that the NFA may be in after 

matching a 
Set S to S union N’– Set S to S union N 

• If S is nonempty, there is a transition for a from D to the DFA state 
that has the set S of NFA states 
Otherwise there is no transition for a from D Otherwise, there is no transition for a from D • 



NFA to DFA Example for (a|b)*.(a|b)*

1 2

3 5ε
ε

a

7

ε

8
ε

ε

9 10

11 13ε
ε

a

15

ε

16
ε

ε

.
ε

1 2

4 6
b

7

ε

8

ε ε
9 10

12 14
b

15

ε

16

ε

a a.
5,7,2,3,4,8 13,15,10,11,12,16

a . a
a a

a a.

1,2,3,4,8

6 7 2 3 4 8

9,10,11,12,16

14 15 10 11 12 16b . b

a

b

a

b

6,7,2,3,4,8 14,15,10,11,12,16.
bb
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Lexical Structure in Languages 

Each language typically has several categories of 
words. In a typical programming language:words. In a typical programming language: 

• Keywords (if, while) 
• Arithmetic Operations (+, -, *, /) 
• Integer numbers (1, 2, 45, 67) 
• Floating point numbers (1.0, .2, 3.337) 
• Identifiers (abc, i, j, ab345) 

• Typically have a lexical category for each 
keyword and/or each categorykeyword and/or each category 

• Each lexical category defined by regexp 
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Lexical Categories Example 

• IfKeyword = if 
WhileKeyword = whileWhileKeyword while 

• Operator = +|-|*|/ 
• Integer = [0-9] [0-9]*tege [0 9] [0 9] 
• Float = [0-9]*. [0-9]* 
• Identifier = [a-z]([a-z]|[0-9])* 
• Note that [0-9] = (0|1|2|3|4|5|6|7|8|9) 

[a-z] = (a|b|c|…|y|z) 
• Will use lexical categories in next level 

• 
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Programming Language Syntax 

• Regular languages suboptimal for specifying 
programming language syntaxprogramming language syntax 

• Why? Constructs with nested syntax 
(a+(b-c))*(d-(x-(y-z)))(a+(b c)) (d (x (y z))) 

• if (x < y) if (y < z) a = 5 else a = 6 else a = 7 
• Regular languages lack state required to modelRegular languages lack state required to model 

nesting 
• Canonical example: nested expressions 
• No regular expression for language of 

parenthesized expressions 

• 



Solution – Context-Free Grammar

• Set of terminals Op = +|-|*|/
{ Op, Int, Open, Close }
Each terminal defined
b l i

Int = [0-9] [0-9]*
Open = <
Cl >by regular expression

• Set of nonterminals
{ Start Expr }

Close = >

{ Start, Expr }
• Set of productions

• Single nonterminal on LHS
Start → Expr
Expr → Expr Op Exprg

• Sequence of terminals and
nonterminals on RHS

p p p p
Expr → Int
Expr → Open Expr Close



c oose a o te a cu e t st

s s n anguage

Production Game 

have a current string 
start with Start nonterminalstart with Start nonterminal 
loop until no more nonterminals 

choose a nonterminal in current stringg 
choose a production with nonterminal in LHS 
replace nonterminal with RHS of production 

substitute regular expressions with corresponding 
strings 

generated tring i i lgenerated string is in language 

Note: different choices produce different stringsNote: different choices produce different strings 



3) I t

Sample Derivation 

Start 
E 

Op = +|-|*|/ 
Int = [0-9] [0-9]* Expr 

Expr Op Expr 
Open Expr Close Op Expr 

Int [0 9] [0 9] 
Open = < 
Close = > 

Open Expr Op Expr Close Op Expr 
Open Int Op Expr Close Op Expr 
Open Int Op Expr Close Op Int Open Int Op Expr Close Op Int 
Open Int Op Int Close Op Int 
< 2 - 1 > + 1 

1) Start → Expr 
2) Expr → Expr Op Expr 

E3) Expr → Int 
4) Expr → Open Expr Close 



• o•

••

Parse Tree 

• Internal Nodes: Nonterminals 
L T i l• Leaves: Terminals 

• Edges: 
From Nonterminal f LHS of production From Nonterminal of LHS of production 

• To Nodes from RHS of production 
Captures derivation of stringCaptures derivation of string 



Parse Tree for <2-1>+1 
Start 

Expr 

Expr ExprOp ExprOp 
+Open 

< 
Close 

> 
Expr 

Int< > 
1 

Op
Expr Expr 

-Int 
2 

Int 
11 
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Ambiguity in Grammar 

Grammar is ambiguous if there are multiple derivations 
(therefore multiple parse trees) for a single string 

Derivation and parse tree usually reflect semantics of 
the programthe program 

Ambi uity in rammar often reflects ambiguity in 
semantics of language 

(which is considered undesirable) 

gg
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Ambiguity Example 

Two parse trees for 2-1+1 

Tree corresponding Tree corresponding 

Start Start 

Tree corresponding 
to <2-1>+1 to 2-<1+1> 

Expr Expr 

Expr ExprOp 
+ 

Int 

ExprExpr Op 
-

Int 
Expr ExprOp 

-
Int Int 

Int 
1 Expr ExprOp 

+ 
Int Int 

2 

2 1 1 1 
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Eliminating Ambiguity 

Solution: hack the grammar 

Original Grammar 
Start → Expr 

Hacked Grammar 
Start → Expr 

Expr → Expr Op Expr 
Expr → Int 
E p  Open E p  Close 

Expr → Expr Op Int 
Expr → Int 
E p  Open E p  Close 

Conceptually, makes all operators associate to left 

Expr → Open Expr Close Expr → Open Expr Close 
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Parse Trees for Hacked Grammar 
Only one parse tree for 2-1+1! 

Start Start 

Valid parse tree No longer valid parse tree 

Expr Expr 

Expr Op 
+ 

Int 
1 

ExprExpr 

In 
Expr Op 

-
Int 

Int 
1 

Expr Expr 
+ 

In In 

Int 
2 

2 
Int 
1 

In 
1 
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Precedence Violations 

• All operators associate to left 
Vi l d f * 

Parse tree for 
2 3*4 • Violates precedence of * over + 

• 2-3*4 associates like <2-3>*4 Start 

Expr 

2-3*4 

Expr 

Expr Op Int Expr Op 
* 

Expr Op Int 

Int 
4 

p p 
-

Int 
2 

Int 
3 
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Hacking Around Precedence 

Original Grammar 
Op = +|-|*|/ 

Hacked Grammar 
AddOp = +|-

Int = [0-9] [0-9]* 
Open = < 

MulOp = *|/ 
Int = [0-9] [0-9]* 

Close = > 

Start Expr 

Open = < 
Close = > 
Start ExprStart → Expr 

Expr → Expr Op Int 
Expr → Int 

Start → Expr 
Expr → Expr AddOp Term 
Expr → TermExpr → Int 

Expr → Open Expr Close 
Expr → Term 
Term → Term MulOp Num 
Term → Num 
Num → Int 
Num → Open Expr Close 



f 2 3*4

I

2

Parse Tree Changes 

Old parse tree 
Start 

New parse tree 
for 2-3*4 

Start 
for 2-3*4 Start 

Expr 

Expr 

Expr Op 

Expr AddOp 
-

Term 
Expr Op 

* 

Expr Op Int 

Int 
4 Term 

Term MulOp 
* 

Num 
Num Expr Op 

-
Int 
2 

Int 
3 Int 

4 

Num 

Int 
Num 

2 2 Int 
3 
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General Idea 

• Group Operators into Precedence Levels 
*  d  /  l  l  bi  d• * and / are at top level, bind strongest 

• + and - are at next level, bind next strongest 
Nonterminal f each Precedence Level Nonterminal for each Precedence Level 
• Term is nonterminal for * and / 

Expr is nonterminal + Expr is nonterminal +  -
• Can make operators left or right associative 

within each levelwithin each level 
• Generalizes for arbitrary levels of precedence 

andfor
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Parser 
• Converts program into a parse tree 
• Can be written by hand 
• Or produced automatically by parser generator 

• Accepts a grammar as input 
• Produces a parser as output 

• Practical problem 
• Parse tree for hacked grammar is complicated 
• Would like to start with more intuitive parse tree 
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Solution 

• Abstract versus Concrete Syntax 
Ab d “i iti ”• Abstract syntax corresponds to “intuitive  way 
of thinking of structure of program 
• Omits details like superfluous keywords thatOmits details like superfluous keywords that 

are there to make the language 
unambiguous 

• Abstract syntax may be ambiguous 
• Concrete Syntax corresponds to full grammar 

used to parse the language 
• Parsers are often written to produce abstract 

syntax treessyntax trees. 
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Abstract Syntax Trees 

• Start with intuitive but ambiguous grammar 
H k  k  i  bi  • Hack grammar to make it unambiguous 
• Concrete parse trees 

Less intuitiveLess intuitive 
• Convert concrete parse trees to abstract syntax 

treestrees 
• Correspond to intuitive grammar for language 
• Simpler for program to manipulateSimpler for program to manipulate 
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ExampleHacked Unambiguous 
GrammarGrammar 

AddOp = +|-
MulOp = *|/ 
Int [0 9] [0 9]* 

Intuitive but Ambiguous 
Grammar 

Int [0-9] [0-9]* 
Open = < 
Close = > 

Op = *|/|+|-
Int = [0-9] [0-9]* 
Sta E p  

Start → Expr 
Expr → Expr AddOp Term 
Expr → Term 

Start → Expr 
Expr → Expr Op Expr 
Expr → Int 

Term → Term MulOp Num 
Term → Num 
Num → Int Expr → Int 
Num → Open Expr Close 
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Concrete parse 
tree 

Start 
Abstract syntax 

tree tree 
for <2-3>*4 

Expr 

Expr Op Expr 

tree 
for <2-3>*4 

Start Expr 
* 

Expr
Op 

Expr 

Int 
4 

Expr 

Start 

Expr 

-Int 
2 

4 
Int 
3Expr AddOp 

-
Term 

• Uses intuitive 
grammar 

• Eliminates superfluous 

Term 
Term MulOp 

* 
Num 

Num Eliminates superfluous 
terminals 
• Open  

Int 
4 

Num 

Int 
2 

Num 

In 
• Close  

2 Int 
3 



Start
Abstract parse tree Further simplified Start

Expr
Expr

Abstract parse tree 
for <2-3>*4

Further simplified 
abstract syntax 

tree 

Expr Op
*

OI

Int
4

I

Expr Op
*

Expr

Expr

IntExpr

for <2-3>*4

Op
-

Int
2

Int
3

Expr
Op
-Int

2

Int
4

Expr

Int
32 3
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Summary 

• Lexical and Syntactic Levels of Structure 
L i  l  l i d• Lexical – regular expressions and automata 

• Syntactic – grammars 
Grammar mbiguitiesGrammar ambiguities 
• Hacked grammars 

Abstract syntax treesAbstract syntax trees 
• Generation versus Recognition Approaches 

Generation more convenient for specificationGeneration more convenient for specification 
• Recognition required in implementation 

• 



Handling If Then Else 

Start → Stat 
Stat → if Expr then Stat else StatStat → if Expr then Stat else Stat 
Stat → if Expr then Stat 
Stat → ... 



Parse Trees 

• Consider Statement if e1 then if e2 then s1 else s2 



2 1 2

Stat Two Parse Trees 

if Expr Stat 

if Expr Stat elsee1 Statthen 

e2 s1 s2Stat 

if Expr Stat else Statthenif Expr Stat else 

e1 

Stat 

s2 

Which is 
correct? 

then 

if Expr 

e2 

s1then 

e2 



Alternative Readings 

• Parse Tree Number 1 
ifif e1 

if e2 s1 
Grammar is ambiguous else s2 

• Parse Tree Number 2 

Grammar is ambiguous 

if e1 

if e2 s1 
else s2 
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Hack ed Gr ammar 

Goal → Stat 
Stat → WithElseStat → WithElse 
Stat → LastElse 
WithElse → if Expr then WithElse else WithElse 
WithElse → <statements without if then or if then else> 
LastElse → if Expr then Stat 
LastElse if Expr then WithElse else LastElseLastElse → if Expr then WithElse else LastElse 



Hacked Grammar

• Basic Idea: control carefully where an if without 
an else can occuran else can occur
• Either at top level of statement
• Or as very last in a sequence of if then else if• Or as very last in a sequence of if then else if 

then ... statements
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Grammar Vocabulary 

• Leftmost derivation 
Al d l ft i i• Always expands leftmost remaining 
nonterminal 

• Similarly for rightmost derivationSimilarly for rightmost derivation 
• Sentential form 

• Partially or fully derived string from a step inPartially or fully derived string from a step in 
valid derivation 

• 0 +  Expr Op Expr 
• 0 +  Expr - 2 



Defining a Language 

• Grammar 
• Generative approachGenerative approach 
• All strings that grammar generates (How many are 

there for grammar in previous example?) 
• Automaton 

• Recognition approach 
• All strings that automaton accepts 

• Different flavors of grammars and automata 
• In general, grammars and automata correspond 
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Regular Languages 

• Automaton Characterization 
(S A F )• (S,A,F,s0,sF) 

• Finite set of states S 
Finite Alphabet AFinite Alphabet A 

• Transition function F : S ×A → S 
Start tate sStart state s0 

• Final states sF 

• Lanuage is set of strings accepted by AutomatonLanuage is set of strings accepted by Automaton 
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Regular Languages 

• Regular Grammar Characterization 
(T NT S P)• (T,NT,S,P) 

• Finite set of Terminals T 
Finite set f Nonterminals NTFinite set of Nonterminals NT 

• Start Nonterminal S (goal symbol, start 
symbol)symbol) 

• Finite set of Productions P: NT → T U NT U T 
NT 

• Language is set of strings generated by grammar 



rammar

g

Grammar and Automata 
CorrespondenceCorrespondence 

Grammar 
Regular 

Automaton 
Finite State Automaton Regular 

Context-Free Grammar 
Context-Sensitive Grammar 

Finite-State Automaton 
Push-Down Automaton 

Turing Machine 

Grammar
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Context-Free Grammars 

• Grammar Characterization 
(T NT S P)• (T,NT,S,P) 

• Finite set of Terminals T 
Finite set f Nonterminals NTFinite set of Nonterminals NT 

• Start Nonterminal S (goal symbol, start 
symbol)symbol) 

• Finite set of Productions P: NT → (T | NT)* 
• RHS of production can have any sequence ofRHS of production can have any sequence of 

terminals or nonterminals 
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Push-Down Automata 

• DFA Plus a Stack 
(S A V F )• (S,A,V, F,s0,sF) 

• Finite set of states S 
Finite Input Alphabet A Stack Alphabet VFinite Input Alphabet A, Stack Alphabet V 

• Transition relation F : S ×(A U{ε})×V → S × V* 
Start tate sStart state s0 

• Final states sF 

• Each configuration consists of a state a stack Each configuration consists of a state, a stack, 
and remaining input string 
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CFG Versus PDA 

• CFGs and PDAs are of equivalent power 
G I l i M h i• Grammar Implementation Mechanism: 
• Translate CFG to PDA, then use PDA to parse 

input stringinput string 
• Foundation for bottom-up parser generators 
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Context-Sensitive Grammars and 
Turing MachinesTuring Machines 

• Context-Sensitive Grammars Allow Productions to 
Use ContextUse Context 
• P: (T.NT)+ → (T.NT)* 

• Turing Machines HaveTuring Machines Have 
• Finite State Control 
• Two-Way Tape Instead of A StackTwo Way Tape Instead of A Stack 
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