6.006 Spring 2010

 Lecture 10: I ntroduction to Dataflow Analysis
Value Numbering Summary

- Forward symbolic execution of basic block
- Maps
- Var2Val - symbolic value for each variable
- Exp2Val - value of each evaluated expression
- Exp2Tmp - tmp that holds value of each evaluated expression
- Algorithm
- For each statement
- If variables in RHS not in the Var2Val add it with a new value
- If RHS expression in Exp2Tmp use that Temp
- If not add RHS expression to Exp2Val with new value
- Copy the value into a new tmp and add to EXp2Tmp

Copy Propagation Summary

- Forward Propagation within basic block
- Maps
- tmp2var: tells which variable to use instead of a given temporary variable
- var2set: inverse of tmp to var. tells which temps are mapped to a given variable by tmp to var
Algorithm
- For each statement
- If any tmp variable in the RHS is in tmp2var replace it with var
- If LHS var in var2set remove the variables in the set in tmp2var

Dead Code Elimination Summary

- Backward Propagation within basic block
- Map
- A set of variables that are needed later in computation
- Algorithm
- Every statement encountered
- If LHS is not in the set, remove the statement
- Else put all the variables in the RHS into the set

Summary So far... what's next

- Till now: How to analyze and transform within a basic block
- Next: How to do it for the entire procedure

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Reaching Definitions

- Concept of definition and use
$-a=x+y$
- is a definition of a
- is a use of x and y
- A definition reaches a use if
- value written by definition
-(may)be read by use

Reaching Definitions

Reaching Definitions and Constant Propagation

- Is a use of a variable a constant?
- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant
- Can replace variable with constant

Is a Constant in $\mathrm{s}=\mathrm{s}+\mathrm{a} * \mathrm{~b}$?

Yes!
On all reaching definitions
$a=4$

Constant Propagation Transform

Yes!
On all reaching definitions

$$
a=4
$$

Is b Constant in $\mathrm{s}=\mathrm{s}+\mathrm{a} * \mathrm{~b}$?

No!
One reaching definition with

$$
\mathrm{b}=1
$$

One reaching definition with

$$
b=2
$$

Splitting

Preserves Information Lost At Merges

Computing Reaching Definitions

- Compute with sets of definitions
- represent sets using bit vectors
- each definition has a position in bit vector
- At each basic block, compute definitions that reach start of block
- definitions that reach end of block
- Do computation by simulating execution of program until reach fixed point

Formalizing Analysis

- Each basic block has
- IN - set of definitions that reach beginning of block
- OUT - set of definitions that reach end of block
- GEN - set of definitions generated in block
- KI LL - set of definitions killed in block
- GEN[s = s + a*b; i = i + 1;] = 0000011
- KILL[s = s + a*b; i = i + 1;] = 1010000
- Compiler scans each basic block to derive GEN and KI LL sets

Dataflow Equations

- IN[b] = OUT[b1] U ... U OUT[bn]
- where b1, ..., bn are predecessors of b in CFG
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- IN[entry] = 0000000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- I nitialize with solution of OUT[b] - 0000000
- Repeatedly apply equations
- IN[b] - OUT[b1] U ... U OUT[bn]
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect

Reaching Definitions Algorithm

```
for all nodes n in N
    OUT[n] = emptyset; // OUT[n] = GEN[n];
I N[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    IN[n] = emptyset;
    for all nodes p in predecessors(n)
        IN[n] = IN[n] U OUT[p];
    OUT[n] = GEN[n] U (IN[n] - KILL[n]);
    if (OUT[n] changed)
        for all nodes s in successors(n)
        Changed = Changed U { s };
```


Questions

- Does the algorithm halt?
- yes, because transfer function is monotonic
- if increase IN, increase OUT
- in limit, all bits are 1
- If bit is 0, does the corresponding definition ever reach basic block?
- If bit is 1 , is does the corresponding definition always reach the basic block?

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Available Expressions

- An expression $x+y$ is available at a point p if
- every path from the initial node to p must evaluate $x+y$ before reaching p,
- and there are no assignments to x or y after the evaluation but before p.
- Available Expression information can be used to do global (across basic blocks) CSE
- If expression is available at use, no need to reevaluate it

Example: Available Expression

Is the Expression Available?

Is the Expression Available?

Is the Expression Available?

NO!

Is the Expression Available?

Use of Available Expressions

Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
- definition reaches a basic block if it comes from ANY predecessor in CFG
- expression is available at a basic block only if it is available from ALL) predecessors in CFG

Expressions
 1: $\mathrm{x}+\mathrm{y}$
 2: $\mathrm{i}<\mathrm{n}$
 3: i+c
 4: $x==0$

0000

Global CSE Transform

Expressions
1: $x+y$
2: $\mathrm{i}<\mathrm{n}$
3: i+c
4: $x==0$

0000

Global CSE Transform

Expressions
1: $x+y$
2: $\mathrm{i}<\mathrm{n}$
3: i+c
4: $x==0$

Formalizing Analysis

- Each basic block has

IN set of expressions available at start of block

- OUT - set of expressions available at end of block
- GEN - set of expressions computed in block
- KILL - set of expressions killed in in block
- GEN[x = z; b = x+y] = 1000
- KI LL[$x=z ; b=x+y]=1001$
- Compiler scans each basic block to derive GEN and KI LL sets

Dataflow Equations

- IN[b] = OUT[b1] $\cap \ldots$... \cap OUT[bn]
- where b1, ..., bn are predecessors of b in CFG
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- IN[entry] = 0000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- IN[entry] - 0000
- Initialize OUT[b] = 1111
- Repeatedly apply equations
- IN[b] = OUT[b1] $\cap \ldots$. \cap OUT[bn]
- OUT[b] = (IN[b] - KI LL[b]) U GEN[b]
- Use a worklist algorithm to reach fixed point

Available Expressions Algorithm

```
for all nodes n in N
    OUT[n] = E; // OUT[n] = E - KI LL[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    IN[n] = E; // E is set of all expressions
for all nodes p in predecessors(n)
    IN[n] = IN[n] \cap OUT[p];
OUT[n] = GEN[n] U (IN[n] - KI LL[n]);
if (OUT[n] changed)
        for all nodes s in successors(n)
        Changed = Changed U { s };
```


Questions

- Does algorithm always halt?
- If expression is available in some execution, is it always marked as available in analysis?
- If expression is not available in some execution, can it be marked as available in analysis?

General Correctness

- Concept in actual program execution
- Reaching definition: definition D, execution E at program point P
- Available expression: expression X, execution E at program point P
- Analysis reasons about all possible executions
- For all executions E at program point P,
- if a definition D reaches P in E
- then D is in the set of reaching definitions at P from analysis
- Other way around
- if D is not in the set of reaching definitions at P from analysis
- then D never reaches P in any execution E
- For all executions E at program point P,
- if an expression X is in set of available expressions at P from analysis
- then X is available in E at P
- Concept of being conservative

Duality In Two Algorithms

- Reaching definitions
- Confluence operation is set union
- OUT[b] initialized to empty set
- Available expressions
- Confluence operation is set intersection
- OUT[b] initialized to set of available expressions
- General framework for dataflow algorithms.
- Build parameterized dataflow analyzer once, use for all dataflow problems

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Liveness Analysis

- A variable v is live at point p if
- v is used along some path starting at p, and
- no definition of v along the path before the use.
- When is a variable v dead at point p?
- No use of v on any path from p to exit node, or
- If all paths from p redefine v before using v.

What Use is Liveness Information?

- Register allocation.
- If a variable is dead, can reassign its register
- Dead code elimination.
- Eliminate assignments to variables not read later.
- But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
- Can eliminate other dead assignments.
- Handle by making all externally visible variables live on exit from CFG

Conceptual I dea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks

Liveness Example

- Assume a,b,c visible outside method
- So are live on exit
- Assume $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ not visible
- Represent Liveness Using Bit Vector
- order is abcxyzt

Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector
- order is abcxyzt

Formalizing Analysis

- Each basic block has

IN set of variables live at start of block

- OUT - set of variables live at end of block
- USE - set of variables with upwards exposed uses in block
- DEF - set of variables defined in block
- USE $[x=z ; x=x+1 ;]=\{z\}$ (x not in USE)
- $\operatorname{DEF}[x=z ; x=x+1 ; y=1 ;]=\{x, y\}$
- Compiler scans each basic block to derive USE and DEF sets

Algorithm

```
for all nodes n in N - { Exit }
    IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed = N - { Exit };
while (Changed != emptyset)
        choose a node n in Changed;
        Changed = Changed - { n };
        OUT[n] = emptyset;
        for all nodes s in successors(n)
        OUT[n] = OUT[n] U IN[p];
        IN[n] - use[n] U (out[n] def[n]);
        if (IN[n] changed)
        for all nodes p in predecessors(n)
        Changed = Changed U { p };
```


Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses

Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}$ - $\{$ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n\}$;

IN[n] = emptyset;
for all nodes p in predecessors(n)
$\mathrm{IN}[\mathrm{n}]=\mathrm{IN}[\mathrm{n}] \mathrm{U}$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed) for all nodes s in successors(n)

Changed $=$ Changed U \{ s \};

Available Expressions

Liveness

for all nodes n in N
OUT[n] = E;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}$ - $\{$ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n\}$;
$1 \mathrm{~N}[\mathrm{n}]=\mathrm{E} ;$
for all nodes p in predecessors(n)
$I N[n]=I N[n] \cap$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed $=$ Changed U \{ s \};
for all nodes n in N - \{ Exit \}
IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed $=\mathrm{N}-$ \{ Exit $\}$;
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n$ \};

OUT[n] = emptyset;
for all nodes s in successors(n) OUT[n] = OUT[n] U IN[p];
$I N[n]=u s e[n] U(o u t[n]-\operatorname{def}[n]) ;$
if (IN[n] changed)
for all nodes p in predecessors(n)
Changed $=$ Changed $U\{p$;

Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
I N[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}-$ \{ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n$ \};

I N[n] = emptyset;
for all nodes p in predecessors(n)
$\mathrm{IN}[\mathrm{n}]=\mathrm{IN}[\mathrm{n}] \mathrm{U}$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed $=$ Changed $U\{s$ \};

Available Expressions

for all nodes n in N
OUT[n] = E;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}-$ \{ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n$ \};
$I N[n]=E ;$
for all nodes p in predecessors(n)
$I N[n]=I N[n] \cap$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KI LL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed $=$ Changed $\cup\{s$ \};

Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
IN[Entry] = emptyset;
ОUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}-$ \{ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n$ \};

IN[n] = emptyset;
for all nodes p in predecessors(n)
$\mathrm{IN}[\mathrm{n}]=\mathrm{IN}[\mathrm{n}] \mathrm{U}$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed $=$ Changed $\cup\{s$;

Liveness

> for all nodes n in N $$
\text { IN[n] = emptyset; }
$$ OUT[Exit] = emptyset; I N[Exit] = use[Exit]; Changed = N - \{ Exit \};

while (Changed != emptyset)
choose a node n in Changed;
Changed - Changed $\{n\}$;

OUT[n] = emptyset;
for all nodes s in successors(n)
OUT[n] = OUT[n] U IN[p];
$\mathrm{IN}[\mathrm{n}]=\mathrm{use}[\mathrm{n}] \mathrm{U}(\mathrm{out}[\mathrm{n}]-\operatorname{def}[\mathrm{n}])$;
if (IN[n] changed)
for all nodes p in predecessors(n)
Changed $=$ Changed $\cup\{p$ \};

Analysis Information Inside Basic Blocks

- One detail:
- Given dataflow information at IN and OUT of node
- Also need to compute information at each statement of basic block
- Simple propagation algorithm usually works fine
- Can be viewed as restricted case of dataflow analysis

Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
- Assume expressions are available at start of analysis
- Analysis eliminates all that are not available
- Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
- Assume all variables are live at start of analysis
- Analysis finds variables that are dead

Can stop analysis early and use current result

- Dataflow setup same for both analyses
- Optimism/ pessimism depends on intended use

Summary

- Basic Blocks and Basic Block Optimizations
- Copy and constant propagation
- Common sub-expression elimination
- Dead code elimination
- Dataflow Analysis
- Control flow graph
- IN[b], OUT[b], transfer functions, join points
- Paired analyses and transformations
- Reachingdefinitions /constant propagation
- Available expressions/common sub-expression elimination
- Liveness analysis/Dead code elimination
- Stacked analysis and transformations work together

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

