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Lect 10 Int od ction t Lecture 10: Introduction to 
Dataflow Analysis 



Value Numbering Summaryg y 

• Forward symbolic execution of basic block 
• MMaps 

– Var2Val – symbolic value for each variable 
– Exp2Val – value of each evaluated expression 
– Exp2Tmp – tmp that holds value of each evaluated expression 

• Algorithm 
– For each statement For each statement 

• If variables in RHS not in the Var2Val add it with a new value 
• If RHS expression in Exp2Tmp use that Temp 
• IfIf nott add RHS dd RHS expressiion to EExp2Vall withith  new valluet 2V 
• Copy the value into a new tmp and add to EXp2Tmp 
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Copy Propagation Summarypy p g	 y 

•	 Forward Propagation within basic block 
• Maps  

–	 tmp2var: tells which variable to use instead of a given temporary 
variable 

•	

– var2set: inverse of tmp to var. tells which temps are mapped to a 
given variable by tmp to var 

•	 AlgorithmAlgorithm 
–	 For each statement 

• If any tmp variable in the RHS is in tmp2var replace it with var 
• If LHS var in var2set remove the variables in the set in tmp2var 
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•

Dead Code Elimination Summaryy 

• Backward Propagation within basic block 
• Map  

– A set of variables that are needed later in computation 

• AlgorithmAlgorithm 
– Every statement encountered 

• If LHS is not in the set, remove the statement 
• El ll h i bl i h RHS i Else put all the variables in the RHS into thhe set 
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Summary So far… what’s nexty

• Till now: How to analyze and transform y
within a basic block 

• Next: How to do it for the entire procedure 
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Outline 

• Reaching DefinitionsReaching Definitions 

• Available Expressions 

• Liveness 



Reaching Definitionsg

• Concept of definition and usep
– a = x+y
– is a definition of aa d o o a
– is a use of x and y

• A definition reaches a use if• A definition reaches a use if
– value written by definition

may be read by use– may be read by use

Saman Amarasinghe 7 6.035 ©MIT Fall 1998



Reaching Definitionsg

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s
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•

Reaching Definitions and 
Constant PropagationConstant Propagation


• Is a use of a variable a constant? 

Can replace variable with constant
– Then use is in fact a constant 

g
– Check all reaching definitions


– If  all assign variable to same constant


• Can replace variable with constant
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Is a Constant in s = s+a*b?

s = 0; Yes!
a = 4; 
i = 0;

k == 0

On all reaching 
definitionsk 0

b = 1; b = 2;
a = 4

; ;

i < n

s = s + a*b;
i = i + 1; return s
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Constant Propagation 
TransformTransform
s = 0; Yes!
a = 4; 
i = 0;

k == 0

On all reaching 
definitionsk 0

b = 1; b = 2;
a = 4

; ;

i < n

s = s + 4*b;
i = i + 1; return s
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Is b Constant in s = s+a*b?

s = 0; No!
a = 4; 
i = 0;

k == 0

One reaching 
definition withk 0

b = 1; b = 2;
b = 1

One reaching; ;

i < n

g
definition with

b = 2
s = s + a*b;
i = i + 1; return s
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Splittings = 0; 
a = 4; p g

Preserves Information Lost At Merges
a 4;
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i < n

s = s + a*b;
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s s a b;
i = i + 1; return s

s s a b;
i = i + 1; return s



Splittings = 0; 
a = 4; p g

Preserves Information Lost At Merges
a 4;
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

+ *1

i < n

+ *2
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s = s + a*1;
i = i + 1; 

return s s = s + a*2;
i = i + 1; 

return s



a d o a a o o b o

–

e

Computing Reaching 
DefinitionsDefinitions 

• Compute with sets of definitions p
– represent sets using bit vectors 
– each definition has a position in bit vectorp 

• At each basic block, compute 
– definitions that reach start of blockdefinitions that reach start of block 
– definitions that reach end of block 

Do computation by simulating xecution of • Do computation by simulating execution of 
program until reach fixed point 
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1: s = 0;

0000000
1 2 3 4 5 6 7

;
2: a = 4; 
3: i = 0;
k == 0k == 0

11100001110000
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1110000

4: b = 1; 5: b = 2;
11100001110000

1111000 1110100

11111001111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7

11111001111111
i < n

1111100 11111001111111 1111111
1 2 3 4 5 6 7

1 2 3 4 5 6 7
1111100

1111100

1111111

1111111
return s6: s = s + a*b;

7 i i + 1
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0101111
111110011111117: i = i + 1;



s a

t

Formalizing Analysisg y 

• Each basic block has 
– IN - set of definitions that reach beginning of block


– OUT - set of definitions that reach end of block 
– GEN - set of definitions generated in block 
– KILL - set of definitions killed in block


GEN[sGEN[s = s ++ a*b; ii = i + 1 ] i + 1;] = 00000110000011
• *b 
• KILL[s = s + a*b; i = i + 1;] = 1010000 
• C  il  h b  i bl  k  d i  GEN  Compiler scans each basic block to derive GEN 

and KILL sets 
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Dataflow Equationsq

• IN[b] = OUT[b1] U ... U OUT[bn] 
– where b1, ..., bn are predecessors of b in CFG 

• OUT[b] = (IN[b] - KILL[b]) U GEN[b] 
• IN[entry] = 0000000 
• Result: system of equations 

Saman Amarasinghe 18 6.035 ©MIT Fall 1998 



• =
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•

Solving Equationsg q
• Use fixed point algorithm 
• Initialize with solution of OUT[b] = 0000000Initialize with solution of OUT[b] 0000000 
• Repeatedly apply equations 

– IN[b] = OUT[b1] U U OUT[bn] IN[b] OUT[b1] U ... U OUT[bn] 
– OUT[b] = (IN[b] - KILL[b]) U GEN[b] 

• Until reach fixed pointUntil reach fixed point 
• Until equation application has no further effect 
• Use a worklist to track which equationUse a worklist to track which equation 

applications may have a further effect 
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Reaching Definitions Algorithmg g 
for all nodes n in N 

OUT[n] = emptyset; // OUT[n] = GEN[n]; 
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n }; 

IN[n] = emptyset; 
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];[ ]  [ ]  [p];  

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
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if (OUT[n] changed) 
for all nodes s in successors(n) 

Changed = Changed U { s }; 



•

•

QuestionsQ

• Does the algorithm halt? 
– yes, because transfer function is monotonic 
– if increase IN, increase OUT 
– in limit, all bits are 1 

• If bit is 0 does the corresponding definition ever If bit is 0, does the corresponding definition ever 
reach basic block? 

• If bit is 1 is does the corresponding definition If bit is 1, is does the corresponding definition 
always reach the basic block? 

Saman Amarasinghe 21 6.035 ©MIT Fall 1998 



1: s = 0;

0000000
1 2 3 4 5 6 7

;
2: a = 4; 
3: i = 0;
k == 0k == 0

11100001110000
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1110000

4: b = 1; 5: b = 2;
11100001110000

1111000 1110100

11111001111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7

11111001111111
i < n

1111100 11111001111111 1111111
1 2 3 4 5 6 7

1 2 3 4 5 6 7
1111100

1111100

1111111

1111111
return s6: s = s + a*b;

7 i i + 1
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0101111
111110011111117: i = i + 1;



Outline 

• Reaching DefinitionsReaching Definitions 

• Available Expressions 

• Liveness 



Available Expressionsp

• An expression x+y is available at a point p if 
– every path from the initial node to p must evaluate 

x+y before reaching p, 
and there are no assignments to x or y after the – and there are no assignments to x or y after the 
evaluation but before p. 

• Available Expression information can be used toAvailable Expression information can be used to 
do global (across basic blocks) CSE 

• If expression is available at use, no need toIf expression is available at use, no need to 
reevaluate it 
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=

Example: Available Expressionp p 

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Is the Expression Available?p

a = b + c 
YES! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Is the Expression Available?p

a = b + c 
YES! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



Is the Expression Available?p

a = b + c
NO!

d = e + f
f = a + c

b = a + dg = a + c b = a + d
h = c + f

j + b + + d
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j = a + b + c + d



=

Is the Expression Available?p

a = b + c 
NO! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Is the Expression Available?p

a = b + c 
NO! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  

Saman Amarasinghe 30 6.035 ©MIT Fall 2006 

j = a + b + c + d 



=

Is the Expression Available?p

a = b + c 
YES! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Is the Expression Available?p

a = b + c 
YES! 

d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = a + c b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = f b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = f b a + d 
h = c + f 

j  +  b  +  +  d  
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j = a + b + c + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = f b a + d 
h = c + f 

j + + b  +  d  
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j = a + c + b + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = f b a + d 
h = c + f 

j f + b  +  d  
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j = f + b + d 



=

Use of Available Expressionsp

a = b + c 
d = e + f 
f = a + c 

b = a + d  g = f b a + d 
h = c + f 

j f  +  b  +  d  
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j = f + b + d 



e p a a a a s

Computing Available 
ExpressionsExpressions 

• Represent sets of expressions using bit vectors 
• Each expression corresponds to a bit 
• Run dataflow algorithm similar to reachingg g 

definitions 
• Big difference 

– definition reaches a basic block if it comes from ANY 
predecessor in CFG 

ession is ilable t basic block onl if it i – expression is available at a basic block only if it is 
available from ALL predecessors in CFG 
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+ 
0000 

a = x+y; 
x == 0Expressions 

1: x+y 1001 
x = z; 

b = x+y; 

y 
2: i<n 
3: i+c 
4: x==0 

i = x+y; 

4: x==0 1000 

i < n 
1000 

c = x+y; d = x+y 
1100 1100 
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c x+y; 
i = i+c; 

d x+y 



a = x+y; 
0000 

Global CSE Transform 
t = a 

x == 0Expressions 
1: x+y 

1001 
x = z; 

b = x+y; 
t = b 

y 
2: i<n 
3: i+c 
4: x==0 

i = x+y; 

4: x==0 1000 

must use same temp 

i < n 
1000 

must use same temp 
for CSE in all blocks 

c = x+y; d = x+y 
1100 1100 
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c x+y; 
i = i+c; 

d x+y 



a = x+y; 
0000 

Global CSE Transform 
t = a 

x == 0Expressions 
1: x+y 

1001 
x = z; 

b = x+y; 
t = b 

y 
2: i<n 
3: i+c 
4: x==0 

i = t; 

4: x==0 1000 

must use same temp 

i < n 
1000 

must use same temp 
for CSE in all blocks 

c = t; d = t 
1100 1100 

Saman Amarasinghe 44 6.035 ©MIT Fall 2006 

c t; 
i = i+c; 

d t 



– -

Formalizing Analysisg	 y 
• Each basic block has 

IN - set of expressions available at start of block 

GEN

IN set of expressions available at start of block


– OUT - set of expressions available at end of block 
– GEN - set of expressions computed in block 

;

set of expressions computed in block


– KILL - set of expressions killed in in block 

• GEN[[x = z; b = x+y] = 1000y]  
•	 KILL[x = z; b = x+y] = 1001 
•	 Compiler scans each basic block to derive GENCompiler scans each basic block to derive GEN 

and KILL sets 
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Dataflow Equationsq

• IN[b] = OUT[b1]  ...  OUT[bn][ ]  [  ]  [ ]  
– where b1, ..., bn are predecessors of b in CFG 

• OUT[b] = (IN[b] - KILL[b]) U GEN[b] 
• IN[entry] = 0000 
• Result: system of equationsy q 
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Solving Equationsg q
• Use fixed point algorithm 
• IN[entry] = 0000IN[entry] 0000 
• Initialize OUT[b] = 1111 
• Repeatedly apply equations • Repeatedly apply equations 

– IN[b] = OUT[b1]  ...  OUT[bn] 
OUT[b] = (IN[b] KILL[b]) U GEN[b] – OUT[b] = (IN[b] - KILL[b]) U GEN[b] 

• Use a worklist algorithm to reach fixed point 
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Available Expressions 
AlgorithmAlgorithm

for all nodes n in N 
OUT[n] = E; // OUT[n] = E - KILL[n]; 

IN[Entry] emptyset; IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n }; 

IN[n] = E; // E is set of all expressions 
for all nodes p in predecessors(n) 

IN[n] IN[n]  OUT[p]IN[n] = IN[n]  OUT[p]; 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 
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if (OUT[n] changed) 
for all nodes s in successors(n) 

Changed = Changed U { s }; 



QuestionsQ

• Does algorithm always halt? 

• If expression is available in some execution, is it 
always marked as available in analysis? 

f  i  i  il  bl  i  i• If expression is not available in some execution, 
can it be marked as available in analysis? 
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General Correctness 
• Concept in actual program execution 

– Reaching definition: definition D, execution E at program point P 
Available expression: expression X execution E at program point P – Available expression: expression X, execution E at program point P 

• Analysis reasons about all possible executions 
• For all executions E at program point P, 

– if a definition D reaches P in Eif a definition D reaches P in E 
– then D is in the set of reaching definitions at P from analysis 

• Other way around 
– if D is not in the set of reaching definitions at P from analysisg y 
– then D never reaches P in any execution E 

• For all executions E at program point P, 
– if an expression X is in set of available expressions at P from analysis 
– then X is available in E at P 

• Concept of being conservative 
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Duality In Two Algorithmsy	 g 

•	 Reaching definitions 
– Confluence operation is set union 
– OUT[b] initialized to empty set 

•	 Available expressions 
– Confluence operation is set intersection


OUT[b] i iti li d f il bl i
–	 OUT[b] initialized to set of available expressions 

•	 General framework for dataflow algorithms. 
B ild i d d fl l•	 Build parameterized dataflow analyzer once, use 
for all dataflow problems 
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Outline 

• Reaching DefinitionsReaching Definitions 

• Available Expressions 

• Liveness 



Liveness Analysisy

• A variable v is live at point p if 
– v is used along some path starting at p, and 
– no definition of v along the path before the use. 

• When is a variable v dead at point p? 
– No use of  v on any path from p to exit node, or 

If ll th f d fi b f i– If all paths from p redefine v before using v. 
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What Use is Liveness 
Information?Information? 

• Register allocation. 
– If a variable is dead, can reassign its register 

• Dead code elimination. 
– Eliminate assignments to variables not read later. 
– But must not eliminate last assignment to variable 

(such as instance variable) visible outside CFG(such as instance variable) visible outside CFG. 
– Can eliminate other dead assignments. 
– Handle by making all externally visible variables live ony g y 

exit from CFG 
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Conceptual Idea of Analysisp y 

• Simulate execution 
• But start from exit and go backwards in CFG 
• Compute liveness information from end top

beginning of basic blocks 
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Liveness Examplep

a = x+y; 
t 

• Assume a,b,c visible 
0101110 

t = a; 
c = a+x; 
x == 0 

outside method 
• So are live on exit 
• Assume x,y,z,t not 

visible 
1100111 
a b c x y z t 

b = t+z; 
1100100 

• Represent Liveness 
Using Bit Vector 

d i  b  

1000111 

c = y+1; 

1100100 

1110000 

– order is abcxyzt 1100100 

b t 

a b c x y z t 
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a b c x y z t 



Dead Code Elimination 

a = x+y; 
t 

• Assume a,b,c visible 
0101110 

t = a; 
c = a+x; 
x == 0 

outside method 
• So are live on exit 
• Assume x,y,z,t not 

visible 
1100111 
a b c x y z t 

b = t+z; 
1100100 

• Represent Liveness 
Using Bit Vector 

d i  b  

1000111 

c = y+1; 

1100100 

1110000 

– order is abcxyzt 1100100 

b t 

a b c x y z t 
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a b c x y z t 



– -

Formalizing Analysisg	 y 
• Each basic block has 

IN - set of variables live at start of block 

USE

IN set of variables live at start of block 
– OUT - set of variables live at end of block 
– USE - set of variables with upwards exposed uses in block 

;

set of variables with upwards exposed uses in block 
– DEF - set of variables defined in block 

• USE[[x = z; x = x+1;] = { z }}  (  (x not in USE));]  {  
•	 DEF[x = z; x = x+1;y = 1;] = {x, y} 
•	 Compiler scans each basic block to derive USE andCompiler scans each basic block to derive USE and 

DEF sets 
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u

;

= -

Algorithm 
f  ll  d  i  N  { E  i  }for all nodes n in N - { Exit } 

IN[n] = emptyset; 
OUT[Exit] = emptyset; 
IN[[Exit] = use[[Exit];]  ];  
Changed = N - { Exit }; 

while (Changed != emptyset) 
choose a node n in Changed;choose a node n in Changed;

Changed = Changed - { n };


OUT[[ ]n] = empptyyset;

for all nodes s in successors(n) 


OUT[n] = OUT[n] U IN[p];


IN[n] = use[n] U (out[n] - def[n]);IN[n] use[n] U (out[n] def[n]); 

if (IN[n] changed)

for all nodes p in predecessors(n)


Changed = Changed U { p };
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•

o s an ac s ana ses

Similar to Other Dataflow 
AlgorithmsAlgorithms 

• Backwards analysis, not forwardsy ,
• Still have transfer functions 
• Still have confluence operatorsStill have confluence operators 
• Can generalize framework to work for both 

f  a d  d  b  k  a d  lforwards and backwards analyses 
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Comparisonp

Available ExpressionsReaching Definitions Liveness 

for all nodes n in N 
OUT[n] = E; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 

for all nodes n in N 
OUT[n] = emptyset; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 

for all nodes n in N - { Exit } 
IN[n] = emptyset; 

OUT[Exit] = emptyset; 
IN[Exit] = use[Exit]; 

Changed = N - { Entry }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  

Changed = N - { Entry }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  

Changed = N - { Exit }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  Changed Changed { n }; 

IN[n] = E; 
for all nodes p in predecessors(n) 

IN[n] = IN[n]  OUT[p]; 

Changed Changed { n }; 

IN[n] = emptyset; 
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p]; 

Changed Changed { n }; 

OUT[n] = emptyset; 
for all nodes s in successors(n) 

OUT[n] = OUT[n] U IN[p]; 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
for all nodes s in successors(n) 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
for all nodes s in successors(n) 

IN[n] = use[n] U (out[n] - def[n]); 

if (IN[n] changed) 
for all nodes p in predecessors(n) 
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for all nodes s in successors(n) 
Changed = Changed U { s }; 

for all nodes s in successors(n) 
Changed = Changed U { s }; 

for all nodes p in predecessors(n) 
Changed = Changed U { p }; 



= -= -

Comparisonp

Available ExpressionsReaching Definitions 

for all nodes n in N 
OUT[n] = E; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 

for all nodes n in N 
OUT[n] = emptyset; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  

Changed = N - { Entry }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  Changed Changed { n }; 

IN[n] = E; 
for all nodes p in predecessors(n) 

IN[n] = IN[n]  OUT[p]; 

Changed Changed { n }; 

IN[n] = emptyset; 
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p]; 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
for all nodes s in successors(n) 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
for all nodes s in successors(n) 
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for all nodes s in successors(n) 
Changed = Changed U { s }; 

for all nodes s in successors(n) 
Changed = Changed U { s }; 



= - = -

Comparisonp

Reaching Definitions Liveness 

for all nodes n in N 
OUT[n] = emptyset; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 

for all nodes n in N 
IN[n] = emptyset; 

OUT[Exit] = emptyset; 
IN[Exit] = use[Exit]; 

Changed = N - { Entry }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  

Changed = N - { Exit }; 

while (Changed != emptyset) 
choose a node n in Changed; 
Changed = Changed - { n  };  Changed Changed { n }; 

IN[n] = emptyset; 
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p]; 

Changed Changed { n }; 

OUT[n] = emptyset; 
for all nodes s in successors(n) 

OUT[n] = OUT[n] U IN[p]; 

OUT[n] = GEN[n] U (IN[n] - KILL[n]); 

if (OUT[n] changed) 
for all nodes s in successors(n) 

IN[n] = use[n] U (out[n] - def[n]); 

if (IN[n] changed) 
for all nodes p in predecessors(n) 
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for all nodes s in successors(n) 
Changed = Changed U { s }; 

for all nodes p in predecessors(n) 
Changed = Changed U { p }; 



Analysis Information Inside 
Basic BlocksBasic Blocks


• One detail: 
– Given dataflow information at IN and OUT of node


– Also need to compute information at each statement of 
basic block

Can be viewed as restricted case of dataflow analysis 

basic block 
– Simple propagation algorithm usually works fine 
– Can be viewed as restricted case of dataflow analysis
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t

–

Pessimistic vs. Optimistic 
AnalysesAnalyses


– Cannot stop analysis early and use current result 

•	 Available expressions is optimistic                                         

Analysis eliminates all that are not available 

(f(for common subb-expressiion eli  limiinatiion)) 
– Assume expressions are available at start of analysis

–	 Analysis eliminates all that are not available

•	 Live variables is pessimistic (for dead code elimination) 
–	 Assume all variables are live at start of analysis 
– Analysis finds variables that are dead 
–	 Can stop analysis early and use current resultCan stop analysis early and use current result 

•	 Dataflow setup same for both analyses 
•	 Optimism/pessimism depends on intended use 
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Summaryy 
• Basic Blocks and Basic Block Optimizations 

– Copy and constant propagation 
– Common sub expression elimination Common sub-expression elimination 
– Dead code elimination 

• D t fl  Dataflow AAnallysiis 
– Control flow graph 
– IN[b], OUT[b], transfer functions, join points 

•	 Paired analyses and transformations 
– Reachingg definitions //constant pproppaggation 
– Available expressions/common sub-expression elimination 
– Liveness analysis/Dead code elimination 

• Stacked analysis and transformations work together 
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