
e o

Spring 2010Spring 2010

Lect 10 Int od ction t Lecture 10: Introduction to
Dataflow Analysis

Value Numbering Summaryg y

• Forward symbolic execution of basic block
• MMaps

– Var2Val – symbolic value for each variable
– Exp2Val – value of each evaluated expression
– Exp2Tmp – tmp that holds value of each evaluated expression

• Algorithm
– For each statement For each statement

• If variables in RHS not in the Var2Val add it with a new value
• If RHS expression in Exp2Tmp use that Temp
• IfIf nott add RHS dd RHS expressiion to EExp2Vall withith new valluet 2V
• Copy the value into a new tmp and add to EXp2Tmp

Saman Amarasinghe 2 6.035 ©MIT Fall 1998

Copy Propagation Summarypy p g	 y

•	 Forward Propagation within basic block
• Maps

–	 tmp2var: tells which variable to use instead of a given temporary
variable

•	

– var2set: inverse of tmp to var. tells which temps are mapped to a
given variable by tmp to var

•	 AlgorithmAlgorithm
–	 For each statement

• If any tmp variable in the RHS is in tmp2var replace it with var
• If LHS var in var2set remove the variables in the set in tmp2var

Saman Amarasinghe 3	 6.035 ©MIT Fall 1998

•

Dead Code Elimination Summaryy

• Backward Propagation within basic block
• Map

– A set of variables that are needed later in computation

• AlgorithmAlgorithm
– Every statement encountered

• If LHS is not in the set, remove the statement
• El ll h i bl i h RHS i Else put all the variables in the RHS into thhe set

Saman Amarasinghe 4 6.035 ©MIT Fall 1998

Summary So far… what’s nexty

• Till now: How to analyze and transform y
within a basic block

• Next: How to do it for the entire procedure

Saman Amarasinghe 5 6.035 ©MIT Fall 1998

Outline

• Reaching DefinitionsReaching Definitions

• Available Expressions

• Liveness

Reaching Definitionsg

• Concept of definition and usep
– a = x+y
– is a definition of aa d o o a
– is a use of x and y

• A definition reaches a use if• A definition reaches a use if
– value written by definition

may be read by use– may be read by use

Saman Amarasinghe 7 6.035 ©MIT Fall 1998

Reaching Definitionsg

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Saman Amarasinghe 8 6.035 ©MIT Fall 2006

a a a ab o a o a

•

Reaching Definitions and
Constant PropagationConstant Propagation

• Is a use of a variable a constant?

Can replace variable with constant
– Then use is in fact a constant

g
– Check all reaching definitions

– If all assign variable to same constant

• Can replace variable with constant

Saman Amarasinghe 9 6.035 ©MIT Fall 1998

Is a Constant in s = s+a*b?

s = 0; Yes!
a = 4;
i = 0;

k == 0

On all reaching
definitionsk 0

b = 1; b = 2;
a = 4

; ;

i < n

s = s + a*b;
i = i + 1; return s

Saman Amarasinghe 10 6.035 ©MIT Fall 2006

;

Constant Propagation
TransformTransform
s = 0; Yes!
a = 4;
i = 0;

k == 0

On all reaching
definitionsk 0

b = 1; b = 2;
a = 4

; ;

i < n

s = s + 4*b;
i = i + 1; return s

Saman Amarasinghe 11 6.035 ©MIT Fall 2006

;

Is b Constant in s = s+a*b?

s = 0; No!
a = 4;
i = 0;

k == 0

One reaching
definition withk 0

b = 1; b = 2;
b = 1

One reaching; ;

i < n

g
definition with

b = 2
s = s + a*b;
i = i + 1; return s

Saman Amarasinghe 12 6.035 ©MIT Fall 2006

;

Splittings = 0;
a = 4; p g

Preserves Information Lost At Merges
a 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;

i < n

s = s + a*b;

Saman Amarasinghe 13 6.035 ©MIT Fall 2006

s s a b;
i = i + 1; return s

s s a b;
i = i + 1; return s

Splittings = 0;
a = 4; p g

Preserves Information Lost At Merges
a 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

+ *1

i < n

+ *2

Saman Amarasinghe 14 6.035 ©MIT Fall 2006

s = s + a*1;
i = i + 1;

return s s = s + a*2;
i = i + 1;

return s

a d o a a o o b o

–

e

Computing Reaching
DefinitionsDefinitions

• Compute with sets of definitions p
– represent sets using bit vectors
– each definition has a position in bit vectorp

• At each basic block, compute
– definitions that reach start of blockdefinitions that reach start of block
– definitions that reach end of block

Do computation by simulating xecution of • Do computation by simulating execution of
program until reach fixed point

Saman Amarasinghe 15 6.035 ©MIT Fall 1998

1: s = 0;

0000000
1 2 3 4 5 6 7

;
2: a = 4;
3: i = 0;
k == 0k == 0

11100001110000
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1110000

4: b = 1; 5: b = 2;
11100001110000

1111000 1110100

11111001111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7

11111001111111
i < n

1111100 11111001111111 1111111
1 2 3 4 5 6 7

1 2 3 4 5 6 7
1111100

1111100

1111111

1111111
return s6: s = s + a*b;

7 i i + 1

Saman Amarasinghe 16 6.035 ©MIT Fall 2006

0101111
111110011111117: i = i + 1;

s a

t

Formalizing Analysisg y

• Each basic block has
– IN - set of definitions that reach beginning of block

– OUT - set of definitions that reach end of block
– GEN - set of definitions generated in block
– KILL - set of definitions killed in block

GEN[sGEN[s = s ++ a*b; ii = i + 1] i + 1;] = 00000110000011
• *b
• KILL[s = s + a*b; i = i + 1;] = 1010000
• C il h b i bl k d i GEN Compiler scans each basic block to derive GEN

and KILL sets

Saman Amarasinghe 17 6.035 ©MIT Fall 1998

Dataflow Equationsq

• IN[b] = OUT[b1] U ... U OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000000
• Result: system of equations

Saman Amarasinghe 18 6.035 ©MIT Fall 1998

• =

=

•

Solving Equationsg q
• Use fixed point algorithm
• Initialize with solution of OUT[b] = 0000000Initialize with solution of OUT[b] 0000000
• Repeatedly apply equations

– IN[b] = OUT[b1] U U OUT[bn] IN[b] OUT[b1] U ... U OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed pointUntil reach fixed point
• Until equation application has no further effect
• Use a worklist to track which equationUse a worklist to track which equation

applications may have a further effect

Saman Amarasinghe 19 6.035 ©MIT Fall 1998

Reaching Definitions Algorithmg g
for all nodes n in N

OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n)

IN[n] = IN[n] U OUT[p];[] [] [p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

Saman Amarasinghe 20 6.035 ©MIT Fall 1998

if (OUT[n] changed)
for all nodes s in successors(n)

Changed = Changed U { s };

•

•

QuestionsQ

• Does the algorithm halt?
– yes, because transfer function is monotonic
– if increase IN, increase OUT
– in limit, all bits are 1

• If bit is 0 does the corresponding definition ever If bit is 0, does the corresponding definition ever
reach basic block?

• If bit is 1 is does the corresponding definition If bit is 1, is does the corresponding definition
always reach the basic block?

Saman Amarasinghe 21 6.035 ©MIT Fall 1998

1: s = 0;

0000000
1 2 3 4 5 6 7

;
2: a = 4;
3: i = 0;
k == 0k == 0

11100001110000
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1110000

4: b = 1; 5: b = 2;
11100001110000

1111000 1110100

11111001111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7

11111001111111
i < n

1111100 11111001111111 1111111
1 2 3 4 5 6 7

1 2 3 4 5 6 7
1111100

1111100

1111111

1111111
return s6: s = s + a*b;

7 i i + 1

Saman Amarasinghe 22 6.035 ©MIT Fall 2006

0101111
111110011111117: i = i + 1;

Outline

• Reaching DefinitionsReaching Definitions

• Available Expressions

• Liveness

Available Expressionsp

• An expression x+y is available at a point p if
– every path from the initial node to p must evaluate

x+y before reaching p,
and there are no assignments to x or y after the – and there are no assignments to x or y after the
evaluation but before p.

• Available Expression information can be used toAvailable Expression information can be used to
do global (across basic blocks) CSE

• If expression is available at use, no need toIf expression is available at use, no need to
reevaluate it

Saman Amarasinghe 24 6.035 ©MIT Fall 1998

=

Example: Available Expressionp p

a = b + c
d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 25 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
YES!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 26 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
YES!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 27 6.035 ©MIT Fall 2006

j = a + b + c + d

Is the Expression Available?p

a = b + c
NO!

d = e + f
f = a + c

b = a + dg = a + c b = a + d
h = c + f

j + b + + d

Saman Amarasinghe 28 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
NO!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 29 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
NO!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 30 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
YES!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 31 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Is the Expression Available?p

a = b + c
YES!

d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 32 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 33 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 34 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = a + c b a + d
h = c + f

j + b + + d

Saman Amarasinghe 35 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = f b a + d
h = c + f

j + b + + d

Saman Amarasinghe 36 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = f b a + d
h = c + f

j + b + + d

Saman Amarasinghe 37 6.035 ©MIT Fall 2006

j = a + b + c + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = f b a + d
h = c + f

j + + b + d

Saman Amarasinghe 38 6.035 ©MIT Fall 2006

j = a + c + b + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = f b a + d
h = c + f

j f + b + d

Saman Amarasinghe 39 6.035 ©MIT Fall 2006

j = f + b + d

=

Use of Available Expressionsp

a = b + c
d = e + f
f = a + c

b = a + d g = f b a + d
h = c + f

j f + b + d

Saman Amarasinghe 40 6.035 ©MIT Fall 2006

j = f + b + d

e p a a a a s

Computing Available
ExpressionsExpressions

• Represent sets of expressions using bit vectors
• Each expression corresponds to a bit
• Run dataflow algorithm similar to reachingg g

definitions
• Big difference

– definition reaches a basic block if it comes from ANY
predecessor in CFG

ession is ilable t basic block onl if it i – expression is available at a basic block only if it is
available from ALL predecessors in CFG

Saman Amarasinghe 41 6.035 ©MIT Fall 1998

+
0000

a = x+y;
x == 0Expressions

1: x+y 1001
x = z;

b = x+y;

y
2: i<n
3: i+c
4: x==0

i = x+y;

4: x==0 1000

i < n
1000

c = x+y; d = x+y
1100 1100

Saman Amarasinghe 42 6.035 ©MIT Fall 2006

c x+y;
i = i+c;

d x+y

a = x+y;
0000

Global CSE Transform
t = a

x == 0Expressions
1: x+y

1001
x = z;

b = x+y;
t = b

y
2: i<n
3: i+c
4: x==0

i = x+y;

4: x==0 1000

must use same temp

i < n
1000

must use same temp
for CSE in all blocks

c = x+y; d = x+y
1100 1100

Saman Amarasinghe 43 6.035 ©MIT Fall 2006

c x+y;
i = i+c;

d x+y

a = x+y;
0000

Global CSE Transform
t = a

x == 0Expressions
1: x+y

1001
x = z;

b = x+y;
t = b

y
2: i<n
3: i+c
4: x==0

i = t;

4: x==0 1000

must use same temp

i < n
1000

must use same temp
for CSE in all blocks

c = t; d = t
1100 1100

Saman Amarasinghe 44 6.035 ©MIT Fall 2006

c t;
i = i+c;

d t

– -

Formalizing Analysisg	 y
• Each basic block has

IN - set of expressions available at start of block

GEN

IN set of expressions available at start of block

– OUT - set of expressions available at end of block
– GEN - set of expressions computed in block

;

set of expressions computed in block

– KILL - set of expressions killed in in block

• GEN[[x = z; b = x+y] = 1000y]
•	 KILL[x = z; b = x+y] = 1001
•	 Compiler scans each basic block to derive GENCompiler scans each basic block to derive GEN

and KILL sets

Saman Amarasinghe 45	 6.035 ©MIT Fall 1998

Dataflow Equationsq

• IN[b] = OUT[b1] ... OUT[bn][] [] []
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000
• Result: system of equationsy q

Saman Amarasinghe 46 6.035 ©MIT Fall 1998

• =

Solving Equationsg q
• Use fixed point algorithm
• IN[entry] = 0000IN[entry] 0000
• Initialize OUT[b] = 1111
• Repeatedly apply equations • Repeatedly apply equations

– IN[b] = OUT[b1] ... OUT[bn]
OUT[b] = (IN[b] KILL[b]) U GEN[b] – OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point

Saman Amarasinghe 47 6.035 ©MIT Fall 1998

Available Expressions
AlgorithmAlgorithm

for all nodes n in N
OUT[n] = E; // OUT[n] = E - KILL[n];

IN[Entry] emptyset; IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = E; // E is set of all expressions
for all nodes p in predecessors(n)

IN[n] IN[n] OUT[p]IN[n] = IN[n] OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

Saman Amarasinghe 48 6.035 ©MIT Fall 1998

if (OUT[n] changed)
for all nodes s in successors(n)

Changed = Changed U { s };

QuestionsQ

• Does algorithm always halt?

• If expression is available in some execution, is it
always marked as available in analysis?

f i i il bl i i• If expression is not available in some execution,
can it be marked as available in analysis?

Saman Amarasinghe 49 6.035 ©MIT Fall 1998

General Correctness
• Concept in actual program execution

– Reaching definition: definition D, execution E at program point P
Available expression: expression X execution E at program point P – Available expression: expression X, execution E at program point P

• Analysis reasons about all possible executions
• For all executions E at program point P,

– if a definition D reaches P in Eif a definition D reaches P in E
– then D is in the set of reaching definitions at P from analysis

• Other way around
– if D is not in the set of reaching definitions at P from analysisg y
– then D never reaches P in any execution E

• For all executions E at program point P,
– if an expression X is in set of available expressions at P from analysis
– then X is available in E at P

• Concept of being conservative

Saman Amarasinghe 50 6.035 ©MIT Fall 1998

t t

t t

Duality In Two Algorithmsy	 g

•	 Reaching definitions
– Confluence operation is set union
– OUT[b] initialized to empty set

•	 Available expressions
– Confluence operation is set intersection

OUT[b] i iti li d f il bl i
–	 OUT[b] initialized to set of available expressions

•	 General framework for dataflow algorithms.
B ild i d d fl l•	 Build parameterized dataflow analyzer once, use
for all dataflow problems

Saman Amarasinghe 51	 6.035 ©MIT Fall 1998

Outline

• Reaching DefinitionsReaching Definitions

• Available Expressions

• Liveness

Liveness Analysisy

• A variable v is live at point p if
– v is used along some path starting at p, and
– no definition of v along the path before the use.

• When is a variable v dead at point p?
– No use of v on any path from p to exit node, or

If ll th f d fi b f i– If all paths from p redefine v before using v.

Saman Amarasinghe 53 6.035 ©MIT Fall 1998

What Use is Liveness
Information?Information?

• Register allocation.
– If a variable is dead, can reassign its register

• Dead code elimination.
– Eliminate assignments to variables not read later.
– But must not eliminate last assignment to variable

(such as instance variable) visible outside CFG(such as instance variable) visible outside CFG.
– Can eliminate other dead assignments.
– Handle by making all externally visible variables live ony g y

exit from CFG

Saman Amarasinghe 54 6.035 ©MIT Fall 1998

Conceptual Idea of Analysisp y

• Simulate execution
• But start from exit and go backwards in CFG
• Compute liveness information from end top

beginning of basic blocks

Saman Amarasinghe 55 6.035 ©MIT Fall 1998

Liveness Examplep

a = x+y;
t

• Assume a,b,c visible
0101110

t = a;
c = a+x;
x == 0

outside method
• So are live on exit
• Assume x,y,z,t not

visible
1100111
a b c x y z t

b = t+z;
1100100

• Represent Liveness
Using Bit Vector

d i b

1000111

c = y+1;

1100100

1110000

– order is abcxyzt 1100100

b t

a b c x y z t

Saman Amarasinghe 56 6.035 ©MIT Fall 2006

a b c x y z t

Dead Code Elimination

a = x+y;
t

• Assume a,b,c visible
0101110

t = a;
c = a+x;
x == 0

outside method
• So are live on exit
• Assume x,y,z,t not

visible
1100111
a b c x y z t

b = t+z;
1100100

• Represent Liveness
Using Bit Vector

d i b

1000111

c = y+1;

1100100

1110000

– order is abcxyzt 1100100

b t

a b c x y z t

Saman Amarasinghe 57 6.035 ©MIT Fall 2006

a b c x y z t

– -

Formalizing Analysisg	 y
• Each basic block has

IN - set of variables live at start of block

USE

IN set of variables live at start of block
– OUT - set of variables live at end of block
– USE - set of variables with upwards exposed uses in block

;

set of variables with upwards exposed uses in block
– DEF - set of variables defined in block

• USE[[x = z; x = x+1;] = { z }} ((x not in USE));] {
•	 DEF[x = z; x = x+1;y = 1;] = {x, y}
•	 Compiler scans each basic block to derive USE andCompiler scans each basic block to derive USE and

DEF sets

Saman Amarasinghe 58	 6.035 ©MIT Fall 1998

t

u

;

= -

Algorithm
f ll d i N { E i }for all nodes n in N - { Exit }

IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[[Exit] = use[[Exit];]];
Changed = N - { Exit };

while (Changed != emptyset)
choose a node n in Changed;choose a node n in Changed;

Changed = Changed - { n };

OUT[[]n] = empptyyset;

for all nodes s in successors(n)

OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);IN[n] use[n] U (out[n] def[n]);

if (IN[n] changed)

for all nodes p in predecessors(n)

Changed = Changed U { p };

Saman Amarasinghe 59 6.035 ©MIT Fall 1998

•

o s an ac s ana ses

Similar to Other Dataflow
AlgorithmsAlgorithms

• Backwards analysis, not forwardsy ,
• Still have transfer functions
• Still have confluence operatorsStill have confluence operators
• Can generalize framework to work for both

f a d d b k a d lforwards and backwards analyses

Saman Amarasinghe 60 6.035 ©MIT Fall 1998

= -= - = -

Comparisonp

Available ExpressionsReaching Definitions Liveness

for all nodes n in N
OUT[n] = E;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];

for all nodes n in N
OUT[n] = emptyset;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];

for all nodes n in N - { Exit }
IN[n] = emptyset;

OUT[Exit] = emptyset;
IN[Exit] = use[Exit];

Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

Changed = N - { Exit };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n }; Changed Changed { n };

IN[n] = E;
for all nodes p in predecessors(n)

IN[n] = IN[n] OUT[p];

Changed Changed { n };

IN[n] = emptyset;
for all nodes p in predecessors(n)

IN[n] = IN[n] U OUT[p];

Changed Changed { n };

OUT[n] = emptyset;
for all nodes s in successors(n)

OUT[n] = OUT[n] U IN[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)
for all nodes p in predecessors(n)

Saman Amarasinghe 61 6.035 ©MIT Fall 1998

for all nodes s in successors(n)
Changed = Changed U { s };

for all nodes s in successors(n)
Changed = Changed U { s };

for all nodes p in predecessors(n)
Changed = Changed U { p };

= -= -

Comparisonp

Available ExpressionsReaching Definitions

for all nodes n in N
OUT[n] = E;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];

for all nodes n in N
OUT[n] = emptyset;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];

Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n }; Changed Changed { n };

IN[n] = E;
for all nodes p in predecessors(n)

IN[n] = IN[n] OUT[p];

Changed Changed { n };

IN[n] = emptyset;
for all nodes p in predecessors(n)

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

Saman Amarasinghe 62 6.035 ©MIT Fall 1998

for all nodes s in successors(n)
Changed = Changed U { s };

for all nodes s in successors(n)
Changed = Changed U { s };

= - = -

Comparisonp

Reaching Definitions Liveness

for all nodes n in N
OUT[n] = emptyset;

IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];

for all nodes n in N
IN[n] = emptyset;

OUT[Exit] = emptyset;
IN[Exit] = use[Exit];

Changed = N - { Entry };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

Changed = N - { Exit };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n }; Changed Changed { n };

IN[n] = emptyset;
for all nodes p in predecessors(n)

IN[n] = IN[n] U OUT[p];

Changed Changed { n };

OUT[n] = emptyset;
for all nodes s in successors(n)

OUT[n] = OUT[n] U IN[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n)

IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)
for all nodes p in predecessors(n)

Saman Amarasinghe 63 6.035 ©MIT Fall 1998

for all nodes s in successors(n)
Changed = Changed U { s };

for all nodes p in predecessors(n)
Changed = Changed U { p };

Analysis Information Inside
Basic BlocksBasic Blocks

• One detail:
– Given dataflow information at IN and OUT of node

– Also need to compute information at each statement of
basic block

Can be viewed as restricted case of dataflow analysis

basic block
– Simple propagation algorithm usually works fine
– Can be viewed as restricted case of dataflow analysis

Saman Amarasinghe 64 6.035 ©MIT Fall 1998

t

–

Pessimistic vs. Optimistic
AnalysesAnalyses

– Cannot stop analysis early and use current result

•	 Available expressions is optimistic

Analysis eliminates all that are not available

(f(for common subb-expressiion eli limiinatiion))
– Assume expressions are available at start of analysis

–	 Analysis eliminates all that are not available

•	 Live variables is pessimistic (for dead code elimination)
–	 Assume all variables are live at start of analysis
– Analysis finds variables that are dead
–	 Can stop analysis early and use current resultCan stop analysis early and use current result

•	 Dataflow setup same for both analyses
•	 Optimism/pessimism depends on intended use

Saman Amarasinghe 65	 6.035 ©MIT Fall 1998

Summaryy
• Basic Blocks and Basic Block Optimizations

– Copy and constant propagation
– Common sub expression elimination Common sub-expression elimination
– Dead code elimination

• D t fl Dataflow AAnallysiis
– Control flow graph
– IN[b], OUT[b], transfer functions, join points

•	 Paired analyses and transformations
– Reachingg definitions //constant pproppaggation
– Available expressions/common sub-expression elimination
– Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together

Saman Amarasinghe 66	 6.035 ©MIT Fall 1998

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

