
6.035 Project 4:

Dataflow Optimization

Jason Ansel

CSAIL

An “Optimizing” Compiler

●	 Somehow make the code better (on
average):
–	 Faster
–	 Smaller memory footprint of code
–	 Less memory used during run

●	 How to prove this:
–	 Experimentation on benchmark suite!

●	 Must preserve the meaning of the original
program!
–	 Including errors!

An Optimizing Compiler

Lowering Dataflow

Analysis

Transformation

Dataflow
Analysis

Control Flow
Analysis

Code Gen

Transformation

Optimization Peephole

Low IR (or Mid IR)

●	 Do analysis on low-level IR (does this fit what
you had for code gen?)
–	 Simple computations: a = b + c
–	 explicit array accesses
–	 gotos
–	 labels
–	 moves
–	 calls

●	 See Tiger chp. 17 or Whale chp. 4

Lowering Cont.

●	 Perform transformations on your IR:
–	 Global CSE
–	 Loop invariant code motion
–	 Copy propagation
–	 DCE

●	 Some optimizations may work better if you
have info from high level IR
–	 Parallelization
–	 Maybe easier to do in High-level IR?

Control-Flow Analysis

●	 Convert the intermediate code into graph of
basic blocks

●	 Basic block:
–	 sequence of instructions with a single entry and

a single exit
–	 Control must enter at beginning and leave at

end
●	 Simple to convert to a control flow graph

–	 find heads of basic block:
●	 after jump
●	 target of jump

Peephole Optimizations

● Examine a short sequence of instructions
● Try to replace with a better sequence
● Examples:

– Flow of controls
● jumps to jumps

– Algebraic Simplification
● x + 0 x

– Strength Reduction
● x * 3 x + x + x
● Look at AMD64 documentation

Inline Function Expansion (Procedure

Integration)

●	 Replace a function call with the body of the
function

●	 Usually done on high-level IR (AST)
●	 Careful:

–	 Performance?
–	 Recursion?!
–	 Names…

Example

Program {

int x;

void foo() {

x = 2;

}

void main() {

{

int x;

foo();

}

print(x);

}

Example

Program {

int x;

void foo() {

x = 2;

}

void main() {

{

int x;

x = 2;

}

print(x);

}

“Global” Optimizations

● Global mean inter-basic block and intra-procedural
● You can inline functions
● Operate on control flow graph of basic blocks

– You can use a CFG of MIR or LIR
● Usually:

– Perform some dataflow analysis to find candidates
– Validate the correct of candidates using other tests

Iterative Dataflow Analysis

● Use bit vectors to represent the information
– instructions, expressions, variables, etc.

● Set of dataflow equations
● Iterate until a fixed point is reached
● For each basic block, b:

– IN[b] – information that flows into block
– OUT[b] – information that flows out of block

– What happens inside the block

Example: Reaching Defs

● Concept of definition and use

– a = x+y
– is a definition of a
– is a use of x and y

● Given a program point p, a definition d reaches p
– there exists a path from p to d where

● there is not a redefinition of the var of d
– In other words, d is not killed before it reaches p

Example: Reaching Defs

●	 Each basic block has
–	 IN - set of definitions that reach beginning of

block
–	 OUT - set of definitions that reach end of block
–	 GEN - set of definitions generated in block

●	 Be careful about redefinitions in block

–	 KILL - set of definitions killed in block
●	 A statement does not kill itself!

Example: Reaching Defs
● IN[b] = OUT[b1] U ... U OUT[bn]

– where b1, ..., bn are predecessors of b in CFG

● OUT[b] = GEN[b] U (IN[b] - KILL[b])

– Transfer function!
● IN[entry] = 0…0

● Forward analysis
● Confluence operator: U
● Transfer function of form: f(X) = A U (X – B)

– A = GEN, B = KILL

Analysis Information Inside Basic

Blocks

●	 One detail:
–	 Given dataflow information at IN and OUT of node

–	 Also need to compute information at each statement of

basic block
–	 Simple propagation algorithm usually works fine
–	 Can be viewed as restricted case of dataflow analysis

●	 Generates gen[b] and kill[b] sets for each basic
blocks for reaching defs

●	 Might have to specialize for each analysis

Transformation Examples with Dataflow

Analysis

● Global Constant Propagation and Folding
– ~Reaching definitions

● Global Copy Propagation
– Reaching definitions + More

● Loop Invariant Code Motion
– Reaching definitions

● Liveness Analysis
– Useful for register allocation

Constant Propagation

●	 Constant propagation is the process of
substituting the values of known constants in
expressions at compile time.

int x = 14;

int y = 7 - x / 2;

return y * (28 / x + 2);

●	 Applying constant propagation once yields:
int x = 14;

int y = 7 - 14 / 2;

return y * (28 / 14 + 2);

●	 Can apply again after folding!
●	 Works on your 3-address low IR.

Useful Way to Store Reaching Defs

●	 Use-def and Def-use chains
–	 Use-Def (UD) chain lists all definitions flowing

to a use of a variable
–	 Def-Use (DU) chain lists all uses which can be

reached by a definition
●	 Ex: Global Constant Propagation

– For each use of a variable, find all definitions

– If all definitions of the variable are constant and

same value, replace the use with the constant

Copy Propagation

●	 copy propagation is the process of replacing the
occurrences of targets of direct assignments with
their values.

● A direct assignment is an instruction of the form x
= y, which simply assigns the value of y to x.

x = y;

z = 3 + x
● Copy propagation would yield:

x = y

z = 3 + y

Copy Propagation

●	 For s: x = y, we can substitute y for x in all
places, u, where this definition of x is used.
– s must be only def of x reaching u

– On every path from s to u, there are no assignments to
y.

●	 1 and 2 can be checked with u/d chains but
with additional work.

●	 Can check 1 and 2 with a new dataflow
analysis

Copy Propagation Analysis

●	 Bit-vector of all copy statements (could have
multiple x = y)

●	 c_gen[B] is the copy statements generated in B
–	 for x = y, x and y cannot be assigned later in the block

●	 c_kill[B] are the copy statements killed by B
–	x = exp

kills copy statements

var = x and x = var in different blocks!

Copy Propagation Analysis

●	 OUT[b] = c_gen[b] U (IN[b] – c_kill[b])
●	 IN[b] = OUT[b1] ∩ ... ∩ OUT[bn]

–	 where b1, ..., bn are predecessors of b in CFG and bi is
not initial

●	 IN[b_entry] = 0…0

●	 Forward analysis
●	 Confluence operator ∩
●	 Transfer function: f(X) = A U (X – B)

Copy Propagation

●	 After this analysis we know that if the bit for
S is 1 at entry to a block B, only this copy
can “reach” B.

●	 We can replace y with x in B.

●	 Whale Book 12.5.

Liveness Analysis

●	 For block B, let DEF[B] be the set of vars
definitely assigned values in B prior to any
use of that variable in B.
–	 x not in DEF[{y = x + 5; x = q;}]

●	 Let USE[B] be the set of vars whose values
may be used in B prior to any def of the var
–	 x not in USE[{x = 6; y =x + 5;}]

Liveness Analysis

Liveness analysis:
●	 IN[b] = USE[b] U (out[b] – DEF[b])
●	 OUT[B] = IN[s1] U … U IN[sn]

where s1…sn are sucessors of b

●	 Backward analysis
●	 Confluence operator: U
●	 Transfer function: f(X) = A U (X – B)

Dead Code Elimination

●	 Do not use liveness analysis for DCE
●	 It operates on program variables not on

statements!
●	 Consult Whale Book 18.10.

–	 Requires DU and UD chains

Shortcoming of Liveness-Based

DCE Example

0001110

a = x+y;

t = a;

c = a+x;

x == 0

b = t+z;

c = y+1;

1000111

1000100

1000111
a b c x y z t

1000100

a b c x y z t

1000000

a b c x y z t

Loop Invariant Code Motion

●	 Statements which could be moved before the loop or after

the loop, without affecting the semantics of the program.

void foo(int x, int z) {

int y;

for a = 0, x {

y = (x + 3) + y + bar(z);

}

return y;

}

●	 Difficult to get correct: see Dragon 10.7

Loop Invariant Code Motion

●	 UD chains (where does a value come
from?)

●	 Control flow analysis (to figure out which
definition is or is not invariant for a loop)
–	 Old Dragon Book Section 10.3

General

Dataflow Analysis Framework

●	 Build parameterized dataflow analyzer once, use for
all dataflow problems
–	 should work on all your IRs

●	 Commonalities:
–	 Transfer function form
–	 Confluence operators U and ∩

●	 Differences:
–	 Dataflow equations A and B of transfer function
–	 The exact confluence operator
–	 Forward or backward

General

Dataflow Analysis Framework

● Questions:
–	 How are arrays handled?

●	 Handle elements individually for more information
(when you know the information)

–	 Globals:
●	 How are function calls handled?
●	 What can a function call do to global variables?

Common Sub-Expression Elimination

●	 if x o y is computed more than once, can we
eliminate one of the computations

●	 Might not always be profitable
–	 increases register pressure
–	 more memory accesses (versus ALU ops)

●	 For local transformation (within a basic block), we
can use value numbering
–	 See lecture

●	 For global (intra-procedural) CSE, we leverage
dataflow analysis
–	 Available expressions

Available Expressions

●	 Expression x o y is available at point p if
– on every path to p, x o y is computed and
–	 neither x nor y are redefined since the most

recent x o y on a path
●	 Scan function for all expressions and create

a bit vector to represent them
–	 Should be simple if using quadruples

Formalizing Analysis
• Each basic block has

–	 IN - set of expressions available at start of block

–	OUT - set of expressions available at end of block

–	GEN - set of expressions computed in block
•	 generated in block and operands not redefined after

•	 Scan block from beginning to end:

–	 add expressions evaluated
–	 delete expressions whose operands are assigned

–	 be careful with a = a + b

–	KILL - set of expressions killed in in block
•	 generated in other block but operands redefined in this block
•	 look for assignments and kill expressions that have an

operand that is assigned

Dataflow Equations

• IN[b] = OUT[b1] ∩ ... ∩ OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• Initialize:

– IN[i] = 1…1 (all expressions)
– IN[entry] = 0…0 (or 1…1 if we have special entry

node)

• Forward analysis

• Confluence operator: ∩
• Transfer function of familiar form

Solving Equations
• Use fixed point algorithm
• IN[entry] = 0…0
• Initialize OUT[b] = 1…1
• Repeatedly apply equations

– IN[b] = OUT[b1] ∩ ... ∩ OUT[bn]

– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point

Now What?

For all blocks b and expressions exp in IN[b] and evaluated in b

1.	 Locate occurrences in b of exp

2.	 make sure that none of the operands were re-defined in b previously, if
so it is not a CSE

3.	 Find all the reaching occurrences of exp in predecessor blocks
–	 Follow flow edges backwards from b

–	 Don’t go through a block that evaluates exp

–	 The last evaluation of exp in each block reaches b

4.	 Select a new temp t
•	 Replace exp by t for all occurrences in b that are CSE (step 2)

•	 For each instruction found in (3), a = exp replace with:

a = exp

t = a

0000

a = x+y;
Expressions x == 0
1: x+y
2: i<n
3: i+c
4: x==0

d = x+y

x = z;
b = x+y;

i < n

c = x+y;
i = i+c;

i = x+y;

1001

1000

1000

1100 1100

0000

a = x+y;
t = a

x == 0

x = z;
b = x+y;

t = b

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y;

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1000

1100 1100

Global CSE Transform

0000

a = x+y;
t = a

x == 0

x = z;
b = x+y;

t = b

i < n

c = t;
i = i+c;

d = t

i = t;

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1000

1100 1100

Global CSE Transform

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Project 4: Dataflow Optimization
	An “Optimizing” Compiler
	An Optimizing Compiler
	Low IR (or Mid IR)
	Lowering Cont.
	Control-Flow Analysis
	Peephole Optimizations
	Inline Function Expansion (Procedure Integration)
	Example
	Slide 10
	“Global” Optimizations
	Iterative Dataflow Analysis
	Example: Reaching Defs
	Slide 14
	Slide 15
	Analysis Information Inside Basic Blocks
	Transformation Examples with Dataflow Analysis
	Constant Propagation
	Useful Way to Store Reaching Defs
	Copy Propagation
	Slide 21
	Copy Propagation Analysis
	Slide 23
	Slide 24
	Liveness Analysis
	Slide 26
	Dead Code Elimination
	Shortcoming of Liveness-Based DCE Example
	Loop Invariant Code Motion
	Slide 30
	General Dataflow Analysis Framework
	Slide 32
	Common Sub-Expression Elimination
	Available Expressions
	Slide 35
	Slide 36
	Slide 37
	Now What?
	Slide 39
	Slide 40
	Slide 41

