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An “Optimizing” Compiler


●	 Somehow make the code better (on
average): 
–	 Faster 
–	 Smaller memory footprint of code 
–	 Less memory used during run 

●	 How to prove this: 
–	 Experimentation on benchmark suite! 

●	 Must preserve the meaning of the original
program! 
–	 Including errors! 



An Optimizing Compiler
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Low IR (or Mid IR)


●	 Do analysis on low-level IR (does this fit what 
you had for code gen?) 
–	 Simple computations: a = b + c 
–	 explicit array accesses 
–	 gotos 
–	 labels 
–	 moves 
–	 calls 

●	 See Tiger chp. 17 or Whale chp. 4 



Lowering Cont.


●	 Perform transformations on your IR: 
–	 Global CSE 
–	 Loop invariant code motion 
–	 Copy propagation 
–	 DCE 

●	 Some optimizations may work better if you 
have info from high level IR 
–	 Parallelization 
–	 Maybe easier to do in High-level IR? 



Control-Flow Analysis


●	 Convert the intermediate code into graph of
basic blocks 

●	 Basic block: 
–	 sequence of instructions with a single entry and

a single exit 
–	 Control must enter at beginning and leave at 

end 
●	 Simple to convert to a control flow graph 

–	 find heads of basic block: 
●	 after jump 
●	 target of jump 



Peephole Optimizations


● Examine a short sequence of instructions 
● Try to replace with a better sequence 
● Examples: 

– Flow of controls 
● jumps to jumps 

– Algebraic Simplification 
● x + 0  x 

– Strength Reduction 
● x * 3  x + x + x 
● Look at AMD64 documentation 



Inline Function Expansion (Procedure

Integration)


●	 Replace a function call with the body of the 
function 

●	 Usually done on high-level IR (AST) 
●	 Careful: 

–	 Performance? 
–	 Recursion?! 
–	 Names… 



Example


Program {


int x;


void foo() {


x = 2;


}


void main() {


{


int x;


foo();


}


print(x);


}




Example


Program {


int x;


void foo() {


x = 2;


}


void main() {


{


int x;


x = 2;


}


print(x);


}




“Global” Optimizations


● Global mean inter-basic block and intra-procedural 
● You can inline functions 
● Operate on control flow graph of basic blocks 

– You can use a CFG of MIR or LIR 
● Usually: 

– Perform some dataflow analysis to find candidates 
– Validate the correct of candidates using other tests 



Iterative Dataflow Analysis


● Use bit vectors to represent the information 
– instructions, expressions, variables, etc. 

● Set of dataflow equations 
● Iterate until a fixed point is reached 
● For each basic block, b: 

– IN[b] – information that flows into block 
– OUT[b] – information that flows out of block

– What happens inside the block 



Example: Reaching Defs

● Concept of definition and use 

– a = x+y 
– is a definition of a 
– is a use of x and y 

● Given a program point p, a definition d reaches p 
– there exists a path from p to d where 

● there is not a redefinition of the var of d 
– In other words, d is not killed before it reaches p 



Example: Reaching Defs


●	 Each basic block has 
–	 IN - set of definitions that reach beginning of 

block 
–	 OUT - set of definitions that reach end of block 
–	 GEN - set of definitions generated in block


●	 Be careful about redefinitions in block 

–	 KILL - set of definitions killed in block 
●	 A statement does not kill itself! 



Example: Reaching Defs 
● IN[b] = OUT[b1] U ... U OUT[bn] 

– where b1, ..., bn are predecessors of b in CFG

● OUT[b] = GEN[b] U (IN[b] - KILL[b]) 

– Transfer function! 
● IN[entry] = 0…0 

● Forward analysis 
● Confluence operator: U 
● Transfer function of form: f(X) = A U (X – B) 

– A = GEN, B = KILL 



Analysis Information Inside Basic

Blocks


●	 One detail: 
–	 Given dataflow information at IN and OUT of node

–	 Also need to compute information at each statement of 

basic block 
–	 Simple propagation algorithm usually works fine 
–	 Can be viewed as restricted case of dataflow analysis 

●	 Generates gen[b] and kill[b] sets for each basic 
blocks for reaching defs 

●	 Might have to specialize for each analysis 



Transformation Examples with Dataflow

Analysis


● Global Constant Propagation and Folding 
– ~Reaching definitions 

● Global Copy Propagation 
– Reaching definitions + More 

● Loop Invariant Code Motion 
– Reaching definitions 

● Liveness Analysis 
– Useful for register allocation 



Constant Propagation


●	 Constant propagation is the process of
substituting the values of known constants in 
expressions at compile time. 

int x = 14;

int y = 7 - x / 2;

return y * (28 / x + 2);


●	 Applying constant propagation once yields: 
int x = 14;

int y = 7 - 14 / 2;

return y * (28 / 14 + 2);


●	 Can apply again after folding! 
●	 Works on your 3-address low IR. 



Useful Way to Store Reaching Defs


●	 Use-def and Def-use chains 
–	 Use-Def (UD) chain lists all definitions flowing 

to a use of a variable 
–	 Def-Use (DU) chain lists all uses which can be 

reached by a definition 
●	 Ex: Global Constant Propagation 

– For each use of a variable, find all definitions

– If all definitions of the variable are constant and 


same value, replace the use with the constant




Copy Propagation


●	 copy propagation is the process of replacing the 
occurrences of targets of direct assignments with 
their values. 

● A direct assignment is an instruction of the form x 
= y, which simply assigns the value of y to x. 

x = y; 

z = 3 + x 
● Copy propagation would yield: 

x = y 

z = 3 + y 



Copy Propagation


●	 For s: x = y, we can substitute y for x in all 
places, u, where this definition of x is used. 
– s must be only def of x reaching u 

– On every path from s to u, there are no assignments to 
y. 

●	 1 and 2 can be checked with u/d chains but 
with additional work. 

●	 Can check 1 and 2 with a new dataflow 
analysis 



Copy Propagation Analysis


●	 Bit-vector of all copy statements (could have 
multiple x = y) 

●	 c_gen[B] is the copy statements generated in B 
–	 for x = y, x and y cannot be assigned later in the block 

●	 c_kill[B] are the copy statements killed by B 
–	x = exp


kills copy statements


var = x and x = var in different blocks!




Copy Propagation Analysis


●	 OUT[b] = c_gen[b] U (IN[b] – c_kill[b]) 
●	 IN[b] = OUT[b1] ∩ ... ∩ OUT[bn] 

–	 where b1, ..., bn are predecessors of b in CFG and bi is 
not initial 

●	 IN[b_entry] = 0…0 

●	 Forward analysis 
●	 Confluence operator ∩ 
●	 Transfer function: f(X) = A U (X – B) 



Copy Propagation


●	 After this analysis we know that if the bit for 
S is 1 at entry to a block B, only this copy 
can “reach” B.  

●	 We can replace y with x in B. 

●	 Whale Book 12.5. 



Liveness Analysis


●	 For block B, let DEF[B] be the set of vars 
definitely assigned values in B prior to any 
use of that variable in B. 
–	 x not in DEF[{y = x + 5; x = q;}] 

●	 Let USE[B] be the set of vars whose values 
may be used in B prior to any def of the var 
–	 x not in USE[{x = 6; y =x + 5;}] 



Liveness Analysis


Liveness analysis: 
●	 IN[b] = USE[b] U (out[b] – DEF[b]) 
●	 OUT[B] = IN[s1] U … U IN[sn] 

where s1…sn are sucessors of b 

●	 Backward analysis 
●	 Confluence operator: U 
●	 Transfer function: f(X) = A U (X – B) 



Dead Code Elimination


●	 Do not use liveness analysis for DCE 
●	 It operates on program variables not on 

statements! 
●	 Consult Whale Book 18.10. 

–	 Requires DU and UD chains 



Shortcoming of Liveness-Based

DCE Example 

0001110

a = x+y;


t = a;

c = a+x;

x == 0


b = t+z; 

c = y+1; 

1000111 

1000100

1000111 
a b c x y z t 

1000100

a b c x y z t 

1000000

a b c x y z t 



Loop Invariant Code Motion

●	 Statements which could be moved before the loop or after 

the loop, without affecting the semantics of the program. 

void foo(int x, int z) {

int y;

for a = 0, x {


y = (x + 3) + y + bar(z);

}

return y;


}


●	 Difficult to get correct: see Dragon 10.7 



Loop Invariant Code Motion 

●	 UD chains (where does a value come 
from?) 

●	 Control flow analysis (to figure out which 
definition is or is not invariant for a loop) 
–	 Old Dragon Book Section 10.3 



General 

Dataflow Analysis Framework


●	 Build parameterized dataflow analyzer once, use for
all dataflow problems 
–	 should work on all your IRs 

●	 Commonalities: 
–	 Transfer function form 
–	 Confluence operators U and ∩ 

●	 Differences: 
–	 Dataflow equations A and B of transfer function 
–	 The exact confluence operator 
–	 Forward or backward 



General 

Dataflow Analysis Framework


● Questions: 
–	 How are arrays handled? 

●	 Handle elements individually for more information 
(when you know the information) 

–	 Globals: 
●	 How are function calls handled? 
●	 What can a function call do to global variables? 



Common Sub-Expression Elimination 

●	 if x o y is computed more than once, can we 
eliminate one of the computations 

●	 Might not always be profitable 
–	 increases register pressure 
–	 more memory accesses (versus ALU ops) 

●	 For local transformation (within a basic block), we 
can use value numbering 
–	 See lecture 

●	 For global (intra-procedural) CSE, we leverage 
dataflow analysis 
–	 Available expressions 



Available Expressions


●	 Expression x o y is available at point p if 
– on every path to p, x o y is computed and 
–	 neither x nor y are redefined since the most 

recent x o y on a path 
●	 Scan function for all expressions and create 

a bit vector to represent them 
–	 Should be simple if using quadruples 



Formalizing Analysis 
• Each basic block has 

–	 IN - set of expressions available at start of block 

–	OUT - set of expressions available at end of block


–	GEN - set of expressions computed in block 
•	 generated in block and operands not redefined after

•	 Scan block from beginning to end: 

–	 add expressions evaluated 
–	 delete expressions whose operands are assigned

–	 be careful with a = a + b 

–	KILL - set of expressions killed in in block 
•	 generated in other block but operands redefined in this block 
•	 look for assignments and kill expressions that have an 

operand that is assigned 



Dataflow Equations


• IN[b] = OUT[b1] ∩ ... ∩ OUT[bn] 
– where b1, ..., bn are predecessors of b in CFG


• OUT[b] = (IN[b] - KILL[b]) U GEN[b] 
• Initialize: 

– IN[i] = 1…1 (all expressions) 
– IN[entry] = 0…0 (or 1…1 if we have special entry 

node) 

• Forward analysis 

• Confluence operator: ∩ 
• Transfer function of familiar form 



Solving Equations 
• Use fixed point algorithm 
• IN[entry] = 0…0 
• Initialize OUT[b] = 1…1 
• Repeatedly apply equations 

– IN[b] = OUT[b1] ∩ ... ∩ OUT[bn] 

– OUT[b] = (IN[b] - KILL[b]) U GEN[b] 

• Use a worklist algorithm to reach fixed point




Now What?


For all blocks b and expressions exp in IN[b] and evaluated in b 

1.	 Locate occurrences in b of exp 

2.	 make sure that none of the operands were re-defined in b previously, if 
so it is not a CSE 

3.	 Find all the reaching occurrences of exp in predecessor blocks 
–	 Follow flow edges backwards from b 

–	 Don’t go through a block that evaluates exp 

–	 The last evaluation of exp in each block reaches b 

4.	 Select a new temp t 
•	 Replace exp by t for all occurrences in b that are CSE (step 2) 

•	 For each instruction found in (3), a = exp replace with:

a = exp


t = a
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a = x+y; 
Expressions x == 0 
1: x+y 
2: i<n 
3: i+c 
4: x==0 

d = x+y 

x = z; 
b = x+y; 

i < n 

c = x+y; 
i = i+c; 

i = x+y; 

1001 

1000 

1000 

1100 1100 



0000


a = x+y; 
t = a 

x == 0 

x = z; 
b = x+y; 

t = b 

i < n 

c = x+y; 
i = i+c; 

d = x+y 

i = x+y; 

Expressions 
1: x+y 
2: i<n 
3: i+c 
4: x==0 
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0000


a = x+y; 
t = a 

x == 0 

x = z; 
b = x+y; 

t = b 

i < n 

c = t; 
i = i+c; 

d = t 

i = t; 

Expressions 
1: x+y 
2: i<n 
3: i+c 
4: x==0 

1001 

1000 

1000 

1100 1100 

Global CSE Transform 
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