6.041/6.431 Fall 2010 Quiz 2
 Tuesday, November 2, 7:30-9:30 PM.

 DO NOT TURN THIS PAGE OVER UNTIL

 DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO

 YOU ARE TOLD TO DO SO}

Name:

Recitation Instructor: \qquad

TA: \qquad

Question	Score	Out of
$\mathbf{1 . 1}$		10
$\mathbf{1 . 2}$		10
$\mathbf{1 . 3}$		10
$\mathbf{1 . 4}$		10
$\mathbf{1 . 5}$		10
$\mathbf{1 . 6}$		10
$\mathbf{1 . 7}$		10
$\mathbf{1 . 8}$		10
$\mathbf{2 . 1}$		10
$\mathbf{2 . 2}$		10
$\mathbf{2 . 3}$		5
$\mathbf{2 . 4}$		5
Your Grade		110

- For full credit, answers should be algebraic expressions (no integrals), in simplified form. These expressions may involve constants such as π or e, and need not be evaluated numerically.
- This quiz has 2 problems, worth a total of 110 points.
- You may tear apart page 3, as per your convenience, but you must turn them in together with the rest of the booklet.
- Write your solutions in this quiz booklet, only solutions in this quiz booklet will be graded. Be neat! You will not get credit if we can't read it.
- You are allowed two two-sided, handwritten, 8.5 by 11 formula sheets. Calculators are not allowed.
- You have 120 minutes to complete the quiz.
- Graded quizzes will be returned in recitation on Thursday 11/4.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on $[0,4]$.
(ii) Y is an exponential random variable, independent from X, with parameter $\lambda=2$.

1. ($\mathbf{1 0}$ points) Find the mean and variance of $X-3 Y$.
2. (10 points) Find the probability that $Y \geq X$. (Let c be the answer to this question.)
3. (10 points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.
(You may express your answer in terms of the constant c from the previous part.)
4. (10 points) Find the PDF of $Z=X+Y$.
5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that $Y=3$.
6. (10 points) Find $\mathbf{E}[Z \mid Y=y]$ and $\mathbf{E}[Z \mid Y]$.
7. (10 points) Find the joint $\operatorname{PDF} f_{Z, Y}$ of Z and Y.
8. ($\mathbf{1 0}$ points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let $W=Y$; if it is tails, we let $W=2+Y$. Find the probability of "heads" given that $W=3$.

Problem 2. (30 points) Let X, X_{1}, X_{2}, \ldots be independent normal random variables with mean 0 and variance 9 . Let N be a positive integer random variable with $\mathbf{E}[N]=2$ and $\mathbf{E}\left[N^{2}\right]=5$. We assume that the random variables $N, X, X_{1}, X_{2}, \ldots$ are independent. Let $S=\sum_{i=1}^{N} X_{i}$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \leq|X| \leq 1+\delta) \approx \alpha \delta$, for some constant α. Find the value of α.
2. (10 points) Find the variance of S.
3. (5 points) Are N and S uncorrelated? Justify your answer.
4. (5 points) Are N and S independent? Justify your answer.

Each question is repeated in the following pages. Please write your answer on the appropriate page.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on $[0,4]$.
(ii) Y is an exponential random variable, independent from X, with parameter $\lambda=2$.

1. (10 points) Find the mean and variance of $X-3 Y$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
2. (10 points) Find the probability that $Y \geq X$.
(Let c be the answer to this question.)

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
3. (10 points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.
(You may express your answer in terms of the constant c from the previous part.)

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
4. (10 points) Find the PDF of $Z=X+Y$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that $Y=3$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
6. (10 points) Find $\mathbf{E}[Z \mid Y=y]$ and $\mathbf{E}[Z \mid Y]$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
7. ($\mathbf{1 0}$ points) Find the joint $\operatorname{PDF} f_{Z, Y}$ of Z and Y.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let $W=Y$; if it is tails, we let $W=2+Y$. Find the probability of "heads" given that $W=3$.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
Problem 2. (30 points) Let X, X_{1}, X_{2}, \ldots be independent normal random variables with mean 0 and variance 9 . Let N be a positive integer random variable with $\mathbf{E}[N]=2$ and $\mathbf{E}\left[N^{2}\right]=5$. We assume that the random variables $N, X, X_{1}, X_{2}, \ldots$ are independent. Let $S=\sum_{i=1}^{N} X_{i}$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \leq|X| \leq 1+\delta) \approx \alpha \delta$, for some constant α. Find the value of α.
2. (10 points) Find the variance of S.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
3. (5 points) Are N and S uncorrelated? Justify your answer.
4. (5 points) Are N and S independent? Justify your answer.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

