Quiz 2 Solutions:

November 3, 2009
Problem 2. (49 points)
(a) (7 points)

We start by recognizing that $f_{X}(x)=e^{-x}$ for $x \geq 0$ and $f_{Y \mid X}(y \mid x)=x e^{-x y}$ for $y \geq 0$. Furthermore, $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y \mid X}(y \mid x)$. Substituting for $f_{x}(x)$ and $f_{Y \mid X}(y \mid x)$ yields,

$$
f_{X, Y}(x, y)= \begin{cases}x e^{-(1+y) x}, & x \geq 0, y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(b) (7 points)

The marginal PDF of Y can be found by integrating the joint PDF of X and Y.

$$
\begin{aligned}
f_{Y}(y) & =\int_{X} f_{X, Y}(x, y) d x \\
& =\int_{0}^{\infty} x e^{-(1+y) x} d x \\
f_{Y}(y) & = \begin{cases}\frac{1}{(1+y)^{2}}, & y \geq 0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(c) (7 points)

We are asked to compute the PDF of the random variable X while conditioning on another random variable Y. The conditional PDF of X given that $Y=2$ is

$$
\begin{aligned}
& f_{X \mid Y}(x \mid 2)=\frac{f_{X, Y}(x, 2)}{f_{Y}(2)}=\frac{x e^{-3 x}}{\frac{1}{3^{2}}} \\
& f_{X \mid Y}(x \mid 2)= \begin{cases}9 x e^{-3 x}, & x \geq 0 \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

(d) (7 points)

$$
\begin{aligned}
\mathbf{E}[X \mid Y=2] & =\int_{X} x \cdot f_{X \mid Y}(x \mid 2) d x \\
& =9 \int_{0}^{\infty} x^{2} e^{-3 x} d x \\
& =9 \cdot \frac{2}{3^{3}} \\
& =\frac{2}{3} .
\end{aligned}
$$

6.041/6.431: Probabilistic Systems Analysis

(Fall 2009)
(e) (7 points)

In the new universe in which $X=2$, we are asked to compute the conditional PDF of Y given the event $Y \geq 3$.

$$
f_{Y \mid X, Y \geq 3}(y \mid 2)=\frac{f_{Y \mid X}(y \mid 2)}{\mathbf{P}(Y \geq 3 \mid X=2)} .
$$

We first calculate the $\mathbf{P}(Y \geq 3 \mid X=2)$.

$$
\begin{aligned}
\mathbf{P}(Y \geq 3 \mid X=2) & =\int_{3}^{\infty} f_{Y \mid X}(y \mid 2) d y \\
& =\int_{3}^{\infty} 2 e^{-2 y} d y \\
& =1-F_{Y \mid X}(3 \mid 2) \\
& =1-\left(1-e^{-2 \cdot 3}\right) \\
& =e^{-6}
\end{aligned}
$$

where $F_{Y \mid X(3 \mid 2)}$ is the CDF of an exponential random variable with $\lambda=2$ evaluated at $y=3$. Substituting the values of $f_{Y \mid X}(y \mid 2)$ and $\mathbf{P}(Y \geq 3 \mid X=2)$ yields

$$
f_{Y \mid X, Y \geq 3}(y \mid 2)= \begin{cases}2 e^{6} e^{-2 y}, & y \geq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Alternatively, $f_{Y \mid X}(y \mid 2)$ is an exponential random variable with $\lambda=2$. To compute the conditional PMF $f_{Y \mid X, Y \geq 3}(y \mid 2)$, we can apply the memorylessness property of an exponential variable. Therefore, this conditional PMF is also an exponential random variable with $\lambda=2$, but it is shifted by 3 .
(f) (7 points)

Let's define $Z=e^{2 X}$. Since X is an exponential random variable that takes on non-negative values ($X \geq 0$), $Z \geq 1$. We find the PDF of Z by first computing its CDF.

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(Z \leq z) \\
& =\mathbf{P}\left(e^{2 X} \leq z\right) \\
& =\mathbf{P}(2 X \leq \ln z) \\
& =\mathbf{P}\left(X \leq \frac{\ln z}{2}\right) \\
& =1-e^{-\frac{\ln z}{2}} \\
& =1-e^{\ln z^{-\frac{1}{2}}}
\end{aligned}
$$

The CDF of Z is:

$$
F_{Z}(z)= \begin{cases}1-z^{-\frac{1}{2}} & z \geq 1 \\ 0, & z<1\end{cases}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2009)
Differentiating the CDF of Z yields the PDF

$$
f_{Z}(z)= \begin{cases}\frac{1}{2} z^{-\frac{3}{2}} & z \geq 1 \\ 0, & z<1\end{cases}
$$

Alternatively, you can apply the PDF formula for a strictly monotonic function of a continuous random variable. Recall if $z=g(x)$ and $x=h(z)$, then

$$
f_{Z}(z)=f_{X}(h(z))\left|\frac{d h}{d y}(z)\right| .
$$

In this problem, $z=e^{2 x}$ and $x=\frac{1}{2} \ln z$. Note that $f_{Z}(z)$ is nonzero for $z>1$. Since X is an exponential random variable with $\lambda=1, f_{X}(x)=e^{x}$. Thus,

$$
\begin{aligned}
f_{Z}(z) & =e^{-\frac{1}{2} \ln z}\left|\frac{1}{2 z}\right| \\
& =e^{\ln z^{-\frac{1}{2}}} \frac{1}{2 z} \\
& =\frac{1}{2} z^{-\frac{3}{2}} \quad z \geq 1,
\end{aligned}
$$

where the second equality holds since the expression inside the absolute value is always positive for $z \geq 1$.

Problem 3. (10 points)
(a) (5 points) The quantity $\mathbf{E}[X \mid Y]$ is always:
(i) A number.
(ii) A discrete random variable.
(iii) A continuous random variable.
(iv) Not enough information to choose between (i)-(iii).

If X and Y are not independent, then $\mathbf{E}[X \mid Y]$ is a function of Y and is therefore a continuous random variable. However if X and Y are independent, then $\mathbf{E}[X \mid Y]=\mathbf{E}[X]$ which is a number.
(b) (5 points) The quantity $\mathbf{E}[\mathbf{E}[X \mid Y, N] \mid N]$ is always:
(i) A number.
(ii) A discrete random variable.
(iii) A continuous random variable.
(iv) Not enough information to choose between (i)-(iii).

If X, Y and N are not independent, then the inner expectation $G(Y, N)=\mathbf{E}[X \mid Y, N]$ is a function of Y and N. Furthermore $\mathbf{E}[G(Y, N) \mid N]$ is a function of N, a discrete random variable. If X, Y and N are independent, then the inner expectation $\mathbf{E}[X \mid Y, N]=\mathbf{E}[X]$, which is a number. The expectation of a number given N is still a number, which is a special case of a discrete random variable.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2009)

Problem 4. (25 points)
(a) (i) (5 points)

Using the Law of Iterated Expectations, we have

$$
\mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X \mid Q]]=\mathbf{E}[Q]=\frac{1}{2}
$$

(ii) (5 points)
X is a Bernoulli random variable with a mean $p=\frac{1}{2}$ and its variance is $\operatorname{var}(X)=$ $p(1-p)=1 / 4$.
(b) (7 points)

We know that $\operatorname{cov}(X, Q)=\mathbf{E}[X Q]-\mathbf{E}[X] \mathbf{E}[Q]$, so first let's calculate $\mathbf{E}[X Q]$:

$$
\mathbf{E}[X Q]=\mathbf{E}[\mathbf{E}[X Q \mid Q]]=\mathbf{E}[Q \mathbf{E}[X \mid Q]]=\mathbf{E}\left[Q^{2}\right]=\frac{1}{3}
$$

Therefore, we have

$$
\operatorname{cov}(X, Q)=\frac{1}{3}-\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{12} .
$$

(c) (8 points)

Using Bayes' Rule, we have

$$
f_{Q \mid X}(q \mid 1)=\frac{f_{Q}(q) p_{X \mid Q}(1 \mid q)}{p_{X}(1)}=\frac{f_{Q}(q) \mathbf{P}(X=1 \mid Q=q)}{\mathbf{P}(X=1)}, \quad 0 \leq q \leq 1 .
$$

Additionally, we know that

$$
\mathbf{P}(X=1 \mid Q=q)=q
$$

and that for Bernoulli random variables

$$
\mathbf{P}(X=1)=\mathbf{E}[X]=\frac{1}{2}
$$

Thus, the conditional PDF of Q given $X=1$ is

$$
\begin{aligned}
f_{Q \mid X}(q \mid 1) & =\frac{1 \cdot q}{1 / 2} \\
& = \begin{cases}2 q, & 0 \leq q \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Problem 5. (21 points)
(a) (7 points)

$$
\begin{aligned}
\mathbf{P}(S \geq 1) & =\mathbf{P}(\min \{X, Y\} \geq 1)=\mathbf{P}(X \geq 1 \text { and } Y \geq 1)=\mathbf{P}(X \geq 1) \mathbf{P}(Y \geq 1) \\
& =\left(1-F_{X}(1)\right)\left(1-F_{Y}(1)\right)=(1-\Phi(1))^{2} \approx(1-0.8413)^{2} \approx 0.0252 .
\end{aligned}
$$

(b) (7 points)

Recalling Problem 2 of Problem Set 6, we have

$$
\begin{aligned}
\mathbf{P}(s \leq S \text { and } L \leq \ell) & =\mathbf{P}(s \leq \min \{X, Y\} \text { and } \max \{X, Y\} \leq \ell) \\
& =\mathbf{P}(s \leq X \text { and } s \leq Y \text { and } X \leq \ell \text { and } Y \leq \ell) \\
& =\mathbf{P}(s \leq X \leq \ell) \mathbf{P}(s \leq Y \leq \ell) \\
& =\left(F_{X}(\ell)-F_{X}(s)\right)\left(F_{Y}(\ell) F_{Y}(s)\right) .
\end{aligned}
$$

(c) (7 points)

Given that $s \leq s+\delta \leq \ell$, the event $\{s \leq S \leq s+\delta, \ell \leq L \leq \ell+\delta\}$ is made up of the union of two disjoint possible events:

$$
\{s \leq X \leq s+\delta, \ell \leq Y \leq \ell+\delta\} \cup\{s \leq Y \leq s+\delta, \ell \leq X \leq \ell+\delta\}
$$

In other words, either $S=X$ and $L=Y$, or $S=Y$ and $L=X$. Because the two events are disjoint, the probability of their union is equal to the sum of their individual probabilities.
Using also the independence of X and Y, we have

$$
\begin{aligned}
\mathbf{P}(s \leq S \leq s+\delta, \ell \leq L \leq \ell+\delta)= & \mathbf{P}(s \leq X \leq s+\delta, \ell \leq Y \leq \ell+\delta) \\
& +\mathbf{P}(s \leq y \leq s+\delta, \ell \leq X \leq \ell+\delta) \\
= & \mathbf{P}(s \leq X \leq s+\delta) \mathbf{P}(\ell \leq Y \leq \ell+\delta) \\
& +\mathbf{P}(s \leq y \leq s+\delta) \mathbf{P}(\ell \leq X \leq \ell+\delta) \\
= & \int_{s}^{s+\delta} f_{X}(x) d x \int_{\ell}^{\ell+\delta} f_{Y}(y) d y \\
& +\int_{s}^{s+\delta} f_{Y}(y) d y \int_{\ell}^{\ell+\delta} f_{X}(x) d x
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

