
∫ 

1 Probability Density Functions (PDF) 

For a continuous RV X with PDF fX (x), 

∫ b 

6.041/6.431 Probabilistic Systems P (a ≤ X ≤ b) =  fX (x)dx 
a 

Analysis P (X ∈ A) =  fX (x)dx 
A 

Quiz II Review Properties: 

Fall 2010 • Nonnegativity: 

fX (x) ≥ 0 ∀x 

• Normalization: ∫ ∞ 

fX (x)dx = 1  
−∞ 
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3 Mean and variance of a continuous RV 

2 PDF Interpretation ∫ ∞ 

E[X ] =  xfX (x)dx 
Caution: fX (x) � = x) [ ] = P (X −∞ 

2
Var(X) =  E (X − E[X ])• if X is continuous, P (X = x) = 0  ∀x!! ∫ ∞ 

• fX (x) can  be  ≥ 1 = (x − E[X ])2fX (x)dx 
−∞ 

Interpretation: “probability per unit length” for “small” lengths = E[X2] − (E[X ])2 (≥ 0) 
around x ∫ ∞ 

E[g(X)] = g(x)fX (x)dx 
−∞ 

P (x ≤ X ≤ x + δ) ≈ fX (x)δ E[aX + b] =  aE[X ] +  b 

Var(aX + b) =  a 2Var(X) 
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∫ 

4 Cumulative Distribution Functions 5 Uniform Random Variable 

Definition: If X is a uniform random variable over the interval [a,b]: 
FX (x) =  P (X ≤ x) ⎧ 

monotonically increasing from 0 (at −∞) to  1  (at  +∞). ⎨ 1 if a ≤ x ≤ b 
• Continuous RV (CDF is continuous in x): fX (x) =  b−a ⎩ 0 otherwise 

x ⎧
FX (x) =  P (X ≤ x) =  fX (t)dt ⎪ ⎪ 0  if  x ≤ a

−∞ ⎨ 
FX (x) =  x−a if a ≤ x ≤ bdFX b−a ⎪fX (x) =  (x) ⎪ ⎩dx 1 otherwise (x > b) 

• Discrete RV (CDF is piecewise constant): 
b − a ∑ E[X ] =  

FX (x) =  P (X ≤ x) =  pX (k) 2 
k≤x (b − a)2 

var(X) =  
pX (k) =  FX (k) − FX (k − 1) 12 
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6 Exponential Random Variable 

X is an exponential random variable with parameter λ: 7 Normal/Gaussian Random Variables 
⎧ ⎨ λe−λx if x ≥ 0 General normal RV: N(μ, σ2): 

fX (x) =  ⎩ 0 otherwise 
fX (x) =  √ 

1 
e −(x−μ)2/2σ2 

⎧ σ 2π ⎨ −λx1 − e if x ≥ 0 E[X ] =  μ, Var(X) =  σ2 
FX (x) =  ⎩ 0 otherwise 

Property: If X ∼ N (μ, σ2) and  Y = aX + b 
1 1 

E[X ] =  
λ 

var(X) =  
λ2 then Y ∼ N(aμ + b, a2σ2) 

Memoryless Property: Given that X > t, X − t is an 

exponential RV with parameter λ 
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8 Normal  CDF  

Standard Normal RV: N(0, 1) 

CDF of standard normal RV Y at y: Φ(y) 

- given in tables for y ≥ 0 

- for  y <  0, use the result: Φ(y) = 1  − Φ(−y) 

To evaluate CDF of a general standard normal, express it as a 

function of a standard normal: 

X ∼ N(μ, σ2) ⇔ 
X − μ 

σ 
∼ N (0, 1) 

P (X ≤ x) =  P 
(X − μ 

σ 
≤ 

x − μ 
σ 

) 
= Φ  

( x − μ 
σ 

) 
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9 Joint  PDF  

Joint PDF of two continuous RV X and Y : fX,Y (x, y) 

P (A) =  
∫ ∫  

A 
fX,Y (x, y)dxdy 

Marginal pdf: fX (x) =  
∫∞ 
−∞ fX,Y (x, y)dy 

E[g(X, Y )] = 
∫∞ 
−∞ 

∫∞ 
−∞ g(x, y)fX,Y (x, y)dxdy 

Joint CDF: FX,Y (x, y) =  P (X ≤ x, Y ≤ y) 
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10 Independence 

By definition, 

X, Y independent ⇔ fX,Y (x, y) =  fX (x)fY (y) ∀(x, y) 

If X and Y are independent: 

• E[XY  ]=E[X ]E[Y ] 

• g(X) and  h(Y ) are independent 

• E[g(X)h(Y )] = E[g(X)]E[h(Y )] 
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11 Conditioning on an event 

Let X be a continuous RV and A be an event with P (A) > 0, 

fX|A(x) =  

⎧ ⎨ 

⎩ 

fX (x) 
P (X∈A) if x ∈ A 

0 otherwise 

P (X ∈ B|X ∈ A) =  
∫ 

B 
fX|A(x)dx 

E[X |A] =  
∫ ∞ 

−∞ 
xfX|A(x)dx 

E[g(X)|A] =  
∫ ∞ 

−∞ 
g(x)fX|A(x)dx 
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12 Conditioning on a RV 

X, Y continuous RV 
If A1, . . . , An are disjoint events that form a partition of the sample 

space, fX,Y (x, y)
fX|Y (x|y) =  

fY (y)
n
 ∫ ∞
fX (x) = 	 P (Ai)fX|Ai (x) (≈ total probability theorem) 

fX (x) =  fY (y)fX|Y (x|y)dy (≈ totalprobthm)
i=1 

−∞ 
n 

E[X ] =  P (Ai)E[X |Ai] (total expectation theorem) Conditional Expectation:

i=1 ∫ ∞

n
∑ E[X |Y = y] =  xfX|Y (x|y)dx


E[g(X)] = P (Ai)E[g(X)|Ai] −∞
∫ ∞ 
i=1 

E[g(X)|Y = y] =  g(X)fX|Y (x|y)dx 
−∞ ∫ ∞ 

E[g(X, Y )|Y = y] =  g(x, y)fX|Y (x|y)dx 
−∞ 
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13 Continuous Bayes’ Rule 
Total Expectation Theorem: 

∫ ∞ X, Y continuous RV, N discrete RV, A an event. 
E[X ] =  E[X |Y = y]fY (y)dy 

∫ ∞ ∞ 
−∞

E[g(X)] =	

−∞ 

E[g(X)|Y = y]fY (y)dy 

fX|Y (x|y) =  
fY |X (

f

y

Y 

|x
(y

)f

) 
X (x)

= ∫ 
fY 

f

|

Y
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|

(
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y
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y|
)

t

f

)

X 

fX 

(x

(

) 

t)dt 

−∞ P (A)fY |A(y) P (A)fY |A(y) 
∞ 

E[g(X, Y )] = 
∫ 

E[g(X, Y )|Y = y]fY (y)dy	
P (A|Y = y) =  

fY (y)
= 

fY |A(y)P (A) +  fY |Ac (y)P (Ac) 

−∞ 

P (N = n|Y = y) =  
pN (n)fY |N (y|n)

= ∑ 
pN (n)fY |N (y|n) 

fY (y) i pN (i)fY |N (y|i) 
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14 Derived distributions	 15 Convolution 

Def: PDF of a function of a RV X with known PDF: Y = g(X). W = X + Y , with  X, Y independent. 
Method: • Discrete case: 
• Get the CDF:	 ∑ ∫	 pW (w) =  pX (x)pY (w − x) 

FY (y) =  P (Y ≤ y) =  P (g(X) ≤ y) =  fX (x)dx x


x|g(x)≤y
 • Continuous case: 
• Differentiate: fY (y) =  dFY (y)	 ∞ 

dy 
fW (w) =  fX (x)fY (w − x) dx 

Special case: if  Y = g(X) =  aX + b, fY (y) =  1 fX ( x−b ) −∞ 
|a| a 
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16 Law of iterated expectations 
Graphical Method: 

• put the PMFs (or PDFs) on top of each other	 E[X |Y = y] =  f(y) is  a  number.  

•	 flip the PMF (or PDF) of Y
E[X |Y ] =  f(Y ) is a random variable


(the expectation is taken with respect to X).

• shift the flipped PMF (or PDF) of Y by w	 To compute E[X |Y ], first express E[X |Y = y] as a function of y. 

• cross-multiply and add (or evaluate the integral)	 Law of iterated expectations: 

In particular, if X, Y are independent and normal, then E[X ] =  E[E[X |Y ]] 
W = X + Y is normal. 

(equality between two real numbers) 

19	 20 



17 Law of Total Variance 

Var(X |Y ) is a random variable that is a function of Y 18 Sum of a random number of iid RVs

(the variance is taken with respect to X).


To compute Var(X |Y ), first express N discrete RV, Xi i.i.d and independent of N .


Var(X |Y = y) =  E[(X − E[X |Y = y])2|Y = y]	 Y = X1 + . . .  + XN . Then: 

as a function of y. E[Y ] =  E[X ]E[N ] 

Var(Y ) =  E[N ]Var(X) + (E[X ])2Var(N) 
Law of conditional variances: 

Var(X) =  E[Var(X |Y )] + Var(E[X |Y ]) 

(equality between two real numbers) 
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19 Covariance and Correlation 

Cov(X, Y ) =  E[(X − E[X ])(Y − E[Y ])]

Correlation Coefficient: (dimensionless)


= E[XY  ] − E[X ]E[Y ] 
Cov(X, Y ) •	 By definition, X, Y are uncorrelated ⇔ Cov(X, Y ) =  0.  ρ = ∈ [−1, 1]
σX σY 

•	 If X, Y independent ⇒ X and Y are uncorrelated. (the ρ = 0  ⇔ X and Y are uncorrelated.

converse is not true) |ρ| = 1  ⇔ X − E[X ] =  c[Y − E[Y ]] (linearly related)


•	 In general, Var(X+Y)= Var(X)+ Var(Y)+ 2 Cov(X,Y) 

•	 If X and Y are uncorrelated, Cov(X,Y)=0 and Var(X+Y)=


Var(X)+Var(Y)
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