6.041/6.431 Probabilistic Systems

Analysis

Quiz II Review
Fall 2010

1 Probability Density Functions (PDF)
For a continuous RV X with $\operatorname{PDF} f_{X}(x)$,

$$
\begin{aligned}
P(a \leq X \leq b) & =\int_{a}^{b} f_{X}(x) d x \\
P(X \in A) & =\int_{A} f_{X}(x) d x
\end{aligned}
$$

Properties:

- Nonnegativity:

$$
f_{X}(x) \geq 0 \forall x
$$

- Normalization:

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

2 PDF Interpretation

Caution: $f_{X}(x) \neq P(X=x)$

- if X is continuous, $P(X=x)=0 \quad \forall x!$!
- $f_{X}(x)$ can be ≥ 1

Interpretation: "probability per unit length" for "small" lengths around x

$$
P(x \leq X \leq x+\delta) \approx f_{X}(x) \delta
$$

3 Mean and variance of a continuous RV

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x \\
& =E\left[X^{2}\right]-(E[X])^{2}(\geq 0) \\
E[g(X)] & =\int_{-\infty}^{\infty} g(x) f_{X}(x) d x \\
E[a X+b] & =a E[X]+b \\
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

4 Cumulative Distribution Functions

Definition:

$$
F_{X}(x)=P(X \leq x)
$$

monotonically increasing from 0 (at $-\infty$) to 1 (at $+\infty$).

- Continuous RV (CDF is continuous in x):

$$
\begin{gathered}
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t \\
f_{X}(x)=\frac{d F_{X}}{d x}(x)
\end{gathered}
$$

- Discrete RV (CDF is piecewise constant):

$$
\begin{gathered}
F_{X}(x)=P(X \leq x)=\sum_{k \leq x} p_{X}(k) \\
p_{X}(k)=F_{X}(k)-F_{X}(k-1)
\end{gathered}
$$

5 Uniform Random Variable

If X is a uniform random variable over the interval $[\mathrm{a}, \mathrm{b}]$:

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\
0 & \text { otherwise }\end{cases} \\
F_{X}(x)= \begin{cases}0 & \text { if } x \leq a \\
\frac{x-a}{b-a} & \text { if } a \leq x \leq b \\
1 & \text { otherwise }(x>b)\end{cases} \\
E[X]=\frac{b-a}{2} \\
\operatorname{var}(X)=\frac{(b-a)^{2}}{12}
\end{gathered}
$$

7 Normal/Gaussian Random Variables

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{rc}
\lambda e^{-\lambda x} & \text { if } x \geq 0 \\
0 & \text { otherwise }
\end{array}\right. \\
F_{X}(x)=\left\{\begin{array}{rc}
1-e^{-\lambda x} & \text { if } x \geq 0 \\
0 & \text { otherwise }
\end{array}\right. \\
E[X]=\frac{1}{\lambda} \quad \operatorname{var}(X)=\frac{1}{\lambda^{2}}
\end{gathered}
$$

Memoryless Property: Given that $X>t, X-t$ is an exponential RV with parameter λ

General normal RV: $N\left(\mu, \sigma^{2}\right)$:

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
E[X] & =\mu, \quad \operatorname{Var}(X)=\sigma^{2}
\end{aligned}
$$

Property: If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$

$$
\text { then } Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

8 Normal CDF

Standard Normal RV: $N(0,1)$
CDF of standard normal RV Y at y: $\Phi(y)$

- given in tables for $y \geq 0$
- for $y<0$, use the result: $\Phi(y)=1-\Phi(-y)$

To evaluate CDF of a general standard normal, express it as a
function of a standard normal:

$$
\begin{gathered}
X \sim N\left(\mu, \sigma^{2}\right) \Leftrightarrow \frac{X-\mu}{\sigma} \sim N(0,1) \\
P(X \leq x)=P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{gathered}
$$

9 Joint PDF

Joint PDF of two continuous RV X and $Y: f_{X, Y}(x, y)$

$$
P(A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

Marginal pdf: $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Joint CDF: $F_{X, Y}(x, y)=P(X \leq x, Y \leq y)$

11 Conditioning on an event

Let X be a continuous RV and A be an event with $P(A)>0$,

$$
\begin{aligned}
f_{X \mid A}(x) & = \begin{cases}\frac{f_{X}(x)}{P(X \in A)} & \text { if } x \in A \\
0 & \text { otherwise }\end{cases} \\
P(X \in B \mid X \in A) & =\int_{B} f_{X \mid A}(x) d x \\
E[X \mid A] & =\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x \\
E[g(X) \mid A] & =\int_{-\infty}^{\infty} g(x) f_{X \mid A}(x) d x
\end{aligned}
$$

If A_{1}, \ldots, A_{n} are disjoint events that form a partition of the sample space,

$$
\begin{aligned}
f_{X}(x) & =\sum_{i=1}^{n} P\left(A_{i}\right) f_{X \mid A_{i}}(x)(\approx \text { total probability theorem }) \\
E[X] & =\sum_{i=1}^{n} P\left(A_{i}\right) E\left[X \mid A_{i}\right] \text { (total expectation theorem) } \\
E[g(X)] & =\sum_{i=1}^{n} P\left(A_{i}\right) E\left[g(X) \mid A_{i}\right]
\end{aligned}
$$

12 Conditioning on a RV

X, Y continuous RV

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
f_{X}(x) & =\int_{-\infty}^{\infty} f_{Y}(y) f_{X \mid Y}(x \mid y) d y \quad(\approx \text { totalprobthm })
\end{aligned}
$$

Conditional Expectation:

$$
\begin{aligned}
E[X \mid Y=y] & =\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\
E[g(X) \mid Y=y] & =\int_{-\infty}^{\infty} g(X) f_{X \mid Y}(x \mid y) d x \\
E[g(X, Y) \mid Y=y] & =\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

13 Continuous Bayes' Rule

X, Y continuous RV, N discrete RV, A an event.
$f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid t) f_{X}(t) d t}$
$P(A \mid Y=y)=\frac{P(A) f_{Y \mid A}(y)}{f_{Y}(y)}=\frac{P(A) f_{Y \mid A}(y)}{f_{Y \mid A}(y) P(A)+f_{Y \mid A^{c}}(y) P\left(A^{c}\right)}$
$P(N=n \mid Y=y)=\frac{p_{N}(n) f_{Y \mid N}(y \mid n)}{f_{Y}(y)}=\frac{p_{N}(n) f_{Y \mid N}(y \mid n)}{\sum_{i} p_{N}(i) f_{Y \mid N}(y \mid i)}$

14 Derived distributions

Def: PDF of a function of a RV X with known PDF: $Y=g(X)$.

15 Convolution

$W=X+Y$, with X, Y independent.

- Discrete case:

$$
p_{W}(w)=\sum_{x} p_{X}(x) p_{Y}(w-x)
$$

- Continuous case:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x
$$

18

16 Law of iterated expectations

Graphical Method:

- put the PMFs (or PDFs) on top of each other
$E[X \mid Y=y]=f(y)$ is a number
$E[X \mid Y]=f(Y)$ is a random variable
(the expectation is taken with respect to X).
To compute $E[X \mid Y]$, first express $E[X \mid Y=y]$ as a function of y.
Law of iterated expectations:

$$
E[X]=E[E[X \mid Y]]
$$

(equality between two real numbers)

17 Law of Total Variance

$\operatorname{Var}(X \mid Y)$ is a random variable that is a function of Y
18 Sum of a random number of iid RVs
(the variance is taken with respect to X).
N discrete RV, X_{i} i.i.d and independent of N.
$Y=X_{1}+\ldots+X_{N}$. Then:

$$
\operatorname{Var}(X \mid Y=y)=E\left[(X-E[X \mid Y=y])^{2} \mid Y=y\right]
$$

$$
\begin{aligned}
E[Y] & =E[X] E[N] \\
\operatorname{Var}(Y) & =E[N] \operatorname{Var}(X)+(E[X])^{2} \operatorname{Var}(N)
\end{aligned}
$$

Law of conditional variances:

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y])
$$

(equality between two real numbers)

19 Covariance and Correlation

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

- By definition, X, Y are uncorrelated $\Leftrightarrow \operatorname{Cov}(X, Y)=0$.

Correlation Coefficient: (dimensionless)

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \in[-1,1]
$$

- If X, Y independent $\Rightarrow \mathrm{X}$ and Y are uncorrelated. (the
$\rho=0 \Leftrightarrow \mathrm{X}$ and Y are uncorrelated. converse is not true)
$|\rho|=1 \Leftrightarrow X-E[X]=c[Y-E[Y]]$ (linearly related)
- In general, $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
- If X and Y are uncorrelated, $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$ and $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=$ $\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$

MIT OpenCourseWare
|http://ocw.mit.edu
6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

