Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 1: Solutions
 September 9, 2010

1. Since the events $A \cap B^{c}$ and $A^{c} \cap B$ are disjoint, we have, using the additivity axiom,

$$
\mathbf{P}\left(\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right)=\mathbf{P}\left(A \cap B^{c}\right)+\mathbf{P}\left(A^{c} \cap B\right) .
$$

Since $A=(A \cap B) \cup\left(A \cap B^{c}\right)$ is the union of two disjoint sets, we have, again by the additivity axiom,

$$
\mathbf{P}(A)=\mathbf{P}(A \cap B)+\mathbf{P}\left(A \cap B^{c}\right)
$$

so that

$$
\mathbf{P}\left(A \cap B^{c}\right)=\mathbf{P}(A)-\mathbf{P}(A \cap B) .
$$

Similarly,

$$
\mathbf{P}\left(B \cap A^{c}\right)=\mathbf{P}(B)-\mathbf{P}(A \cap B)
$$

Therefore,

$$
\begin{aligned}
\mathbf{P}\left(A \cap B^{c}\right)+\mathbf{P}\left(A^{c} \cap B\right) & =\mathbf{P}(A)-\mathbf{P}(A \cap B)+\mathbf{P}(B)-\mathbf{P}(A \cap B) \\
& =\mathbf{P}(A)+\mathbf{P}(B)-2 \mathbf{P}(A \cap B) .
\end{aligned}
$$

2. Let
A : The event that the randomly selected student is a genius.
B : The event that the randomly selected student loves chocolate.
From the properties of probability laws proved in lecture, we have

$$
\begin{aligned}
1 & =\mathbf{P}(A \cup B)+\mathbf{P}\left((A \cup B)^{c}\right) \\
& =\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)+\mathbf{P}\left(A^{c} \cap B^{c}\right) \\
& =0.6+0.7-0.4+\mathbf{P}\left(A^{c} \cap B^{c}\right) \\
& =0.9+\mathbf{P}\left(A^{c} \cap B^{c}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathbf{P} \text { (A randomly selected student is neither a genius nor a chocolate lover) } \\
& \quad=\mathbf{P}\left(A^{c} \cap B^{c}\right)=1-0.9=0.1
\end{aligned}
$$

3. Let c denote the probability of a single odd face. Then the probability of a single even face is $2 c$, and by adding the probabilities of the 3 odd faces and the 3 even faces, we get $9 c=1$. Thus, $c=1 / 9$. The desired probability is

$$
\mathbf{P}(\{1,2,3\})=\mathbf{P}(\{1\})+\mathbf{P}(\{2\})+\mathbf{P}(\{3\})=c+2 c+c=4 c=4 / 9
$$

4. See the textbook, Example 1.5, page 13.
$G 1^{\dagger}$. See the textbook, Problem 1.13, page 56.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

