Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 10 Solutions (6.041/6.431 Spring 2010 Quiz 1 Solutions)

Question 1

1.1. Which one of the following statements is true?
(a) $\mathbf{P}(A \cap B)$ may be larger than $\mathbf{P}(A)$.
(b) The variance of X may be larger than the variance of $2 X$.
(c) If $A^{c} \cap B^{c}=\emptyset$, then $\mathbf{P}(A \cup B)=1$.
(d) If $A^{c} \cap B^{c}=\emptyset$, then $\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)$.
(e) If $\mathbf{P}(A)>1 / 2$ and $\mathbf{P}(B)>1 / 2$, then $\mathbf{P}(A \cup B)=1$.

Answer: (c) is true because $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}=\emptyset^{c}=\Omega$.
1.2. Which one of the following statements is true?
(a) If $\mathbf{E}[X]=0$, then $\mathbf{P}(X>0)=\mathbf{P}(X<0)$.
(b) $\mathbf{P}(A)=\mathbf{P}(A \mid B)+\mathbf{P}\left(A \mid B^{c}\right)$
(c) $\mathbf{P}(B \mid A)+\mathbf{P}\left(B \mid A^{c}\right)=1$
(d) $\mathbf{P}(B \mid A)+\mathbf{P}\left(B^{c} \mid A^{c}\right)=1$
(e) $\mathbf{P}(B \mid A)+\mathbf{P}\left(B^{c} \mid A\right)=1$

Answer: (e) is true because B and B^{c} partition Ω.

Question 2

Heather and Taylor play a game using independent tosses of an unfair coin. A head comes up on any toss with probability p, where $0<p<1$. The coin is tossed repeatedly until either the second time head comes up, in which case Heather wins; or the second time tail comes up, in which case Taylor wins. Note that a full game involves 2 or 3 tosses.
2.1. Consider a probabilistic model for the game in which the outcomes are the sequences of heads and tails in a full game. Provide a list of the outcomes and their probabilities of occurring.
Because of the independence of the coin tosses, the outcomes and their probabilities are as follows:

HH	p^{2}
HTH	$p^{2}(1-p)$
HTT	$p(1-p)^{2}$
THH	$p^{2}(1-p)$
THT	$p(1-p)^{2}$
TT	$(1-p)^{2}$

2.2. What is the probability that Heather wins the game?

The event of Heather winning is $\{\mathrm{HH}, \mathrm{HTH}, \mathrm{THH}\}$. Adding the probabilities of the outcomes in this event gives $p^{2}+p^{2}(1-p)+p^{2}(1-p)=p^{2}(3-2 p)$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
2.3. What is the conditional probability that Heather wins the game given that head comes up on the first toss?

$$
\begin{aligned}
\mathbf{P}(\{\text { Heather wins }\} \mid\{\text { first toss } \mathbf{H}\}) & =\frac{\mathbf{P}(\{\text { Heather wins }\} \cap\{\text { first toss } \mathbf{H}\})}{\mathbf{P}(\{\text { first toss } \mathbf{H}\})} \\
& =\frac{\mathbf{P}(\{\mathbf{H H}, \mathbf{H T H}\})}{\mathbf{P}(\{\text { first toss } \mathbf{H}\})} \\
& =\frac{p^{2}+p^{2}(1-p)}{p}=p(2-p)
\end{aligned}
$$

2.4. What is the conditional probability that head comes up on the first toss given that Heather wins the game?

$$
\begin{aligned}
\mathbf{P}(\{\text { first toss } \mathbf{H}\} \mid\{\text { Heather wins }\}) & =\frac{\mathbf{P}(\{\text { first toss } \mathbf{H}\} \cap\{\text { Heather wins }\})}{\mathbf{P}(\{\text { Heather wins }\})} \\
& =\frac{\mathbf{P}(\{\mathbf{H H}, \mathbf{H T H}\})}{\mathbf{P}(\{\text { Heather wins }\})} \\
& =\frac{p^{2}+p^{2}(1-p)}{p^{2}(3-2 p)}=\frac{2-p}{3-2 p}
\end{aligned}
$$

Question 3

A casino game using a fair 4 -sided die (with labels $1,2,3$, and 4) is offered in which a basic game has 1 or 2 die rolls:

- If the first roll is a 1,2 , or 3 , the player wins the amount of the die roll, in dollars, and the game is over.
- If the first roll is a 4 , the player wins $\$ 2$ and the amount of a second ("bonus") die roll in dollars. Let X be the payoff in dollars of the basic game.
3.1. Find the PMF of $X, p_{X}(x)$.

Define a probabilistic model in which the outcomes are the sequences of rolls in a full game. The outcomes, their probabilities, and the resulting values of X are as follows:

ω	$\mathbf{P}(\{\omega\})$	$X(\omega)$
(1)	$1 / 4$	1
(2)	$1 / 4$	2
(3)	$1 / 4$	3
$(4,1)$	$1 / 16$	3
$(4,2)$	$1 / 16$	4
$(4,3)$	$1 / 16$	5
$(4,4)$	$1 / 16$	6

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

By gathering the probabilities of the possible values for X, we obtain

$$
p_{X}(x)= \begin{cases}1 / 4, & \text { for } x=1,2 \\ 5 / 16, & \text { for } x=3 \\ 1 / 16, & \text { for } x=4,5,6 \\ 0, & \text { otherwise }\end{cases}
$$

3.2. Find $\mathbf{E}[X]$.

It does not take too much arithmetic to compute $E[X]$ using the PMF computed in the previous part. A more elegant solution is to use the total expectation theorem. Let A be the event that the first roll is a 4 . Then

$$
\mathbf{E}[X]=\underbrace{\mathbf{P}(A)}_{1 / 4} \underbrace{\mathbf{E}[X \mid A]}_{4.5}+\underbrace{\mathbf{P}\left(A^{c}\right)}_{3 / 4} \underbrace{\mathbf{E}\left[X \mid A^{c}\right]}_{2}=\frac{21}{8}
$$

where $\mathbf{E}[X \mid A]=4.5$ because the conditional distribution is uniform on $\{3,4,5,6\}$; and $\mathbf{E}[X \mid$ $\left.A^{c}\right]=2$ because the conditional distribution is uniform on $\{1,2,3\}$.
3.3. Find the conditional PMF of the result of the first die roll given that $X=3$. (Use a reasonable notation that you define explicitly.)
Let Z be the result of the first die roll, and let $B=\{X=3\}$. By definition of conditioning,

$$
p_{Z \mid B}(z)=\frac{\mathbf{P}(\{Z=z\} \cap B)}{\mathbf{P}(B)}
$$

By using values tabulated above,

$$
p_{Z \mid B}(z)= \begin{cases}4 / 5, & \text { for } z=3 \\ 1 / 5, & \text { for } z=4 \\ 0, & \text { otherwise }\end{cases}
$$

3.4. Now consider an extended game that can have any number of bonus rolls. Specifically:

- Any roll of a 1,2 , or 3 results in the player winning the amount of the die roll, in dollars, and the termination of the game.
- Any roll of a 4 results in the player winning $\$ 2$ and continuation of the game.

Let Y denote the payoff in dollars of the extended game. Find $\mathbf{E}[Y]$.
One could explicitly find the PMF of Y, but this is unnecessarily messy. Instead, let L be the payoff of the last roll and let W be the payoff of all of the earlier rolls. Then $Y=W+L$ by construction, and $\mathbf{E}[Y]=\mathbf{E}[W]+\mathbf{E}[L]$.
The last roll is uniformly distributed on $\{1,2,3\}$, so $\mathbf{E}[L]=2$. The winnings on earlier rolls is $2(N-1)$ where N is the number of rolls in the game. Since termination of the game can be seen as "success" on a Bernoulli trial with success probability of $3 / 4, N$ has the geometric distribution with parameter $3 / 4$. Thus,

$$
\mathbf{E}[W]=\mathbf{E}[2(N-1)]=2 \mathbf{E}[N]-2=2 \cdot \frac{4}{3}-2=\frac{2}{3}
$$

Combining the calculations,

$$
\mathbf{E}[Y]=\mathbf{E}[W]+\mathbf{E}[L]=\frac{2}{3}+2=\frac{8}{3}
$$

(Many other methods of solution are possible.)

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

