Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 16
 (6.041/6.431 Spring 2007 Quiz 2)
 November 2, 2010

Problem 1: Xavier and Wasima are participating in the 6.041 MIT marathon, where race times are defined by random variables ${ }^{1}$. Let X and W denote the race time of Xavier and Wasima respectively. All race times are in hours. Assume the race times for Xavier and Wasima are independent (i.e. X and W are independent). Xavier's race time, X, is defined by the following density

$$
f_{X}(x)= \begin{cases}2 c, & \text { if } 2 \leq x<3, \\ c, & \text { if } 3 \leq x \leq 4, \\ 0, & \text { otherwise },\end{cases}
$$

where c is an unknown constant. Wasima's race time, W, is uniformly distributed between 2 and 4 hours. The density of W is then

$$
f_{W}(w)= \begin{cases}\frac{1}{2}, & \text { if } 2 \leq w \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (i) Find the constant c
(ii) Compute $\mathbf{E}[X]$
(iii) Compute $\mathbf{E}\left[X^{2}\right]$
(iv) Provide a fully labeled sketch of the PDF of $2 X+1$
(b) Compute $\mathbf{P}(X \leq W)$.
(c) Wasima is using a stopwatch to time herself. However, the stopwatch is faulty; it over-estimates her race time by an amount that is uniformly distributed between 0 and $\frac{1}{10}$ hours, which is independent of the actual race time. Thus, if T is the time measured by the stopwatch, then we have

$$
f_{T \mid W}(t \mid w)= \begin{cases}10, & \text { if } w \leq t \leq w+\frac{1}{10} \text { and } 2 \leq w \leq 4, \\ 0, & \text { otherwise }\end{cases}
$$

Find $f_{W \mid T}(w \mid t)$, when $t=3$.
(d) Wasima realizes her stopwatch is faulty and buys a new stopwatch. Unfortunately, the new stopwatch is also faulty; this time, the watch adds random noise N that is normally distributed with mean $\mu=\frac{1}{60}$ hours and variance $\sigma^{2}=\frac{4}{3600}$. Find the probability that the watch overestimates the actual race time by more than 5 minutes, $\mathbf{P}\left(N>\frac{5}{60}\right)$. For full credit express your final answer as a number.
(e) Wasima has a sponsor for the marathon! If Wasima finishes the marathon in w hours, the sponsor pays her $\frac{24}{w}$ thousand dollars. Define

$$
S=\frac{24}{W}
$$

Find the PDF of S.

[^0]Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem 2. Consider the following family of independent random variables $N, A_{1}, B_{1}, A_{2}, B_{2}, \ldots$, where N is a nonnegative discrete random variable and each A_{i} or B_{i} is normal with mean 1 and variance 1. Let $A=\sum_{i=1}^{N} A_{i}$ and $B=\sum_{i=1}^{N} B_{i}$. Recall that the sum of a fixed number of independent normal random variables is normal.
(a) Assume N is geometrically distributed with a mean of $1 / p$.
(i) Find the mean, μ_{a}, and the variance, σ_{a}^{2}, of A.
(ii) Find $c_{a b}$, defined by $c_{a b}=\mathbf{E}[A B]$.
(b) Now assume that N can take only the values 1 (with probability $1 / 3$) and 2 (with probability $2 / 3$).
(i) Give a formula for the PDF of A.
(ii) Find the conditional probability $\mathbf{P}(N=1 \mid A=a)$.
(c) Is it true that $\mathbf{E}[A \mid N]=\mathbf{E}[A \mid B, N]$? Either provide a proof, or an explanation why the equality does not hold.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1} \mathrm{~A}$ runner's race time is defined as the time required for a given runner to complete the marathon.

