Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 16 Solutions

(6.041/6.431 Spring 2007 Quiz 2 Solutions)

November 2, 2010

Problem 1:

(a) (i) The plot for the PDF of X is shown in Figure 1. The PDF has to integrate to 1, so the area under $f_{X}(x)$ is $2 \mathrm{c}+\mathrm{c}$, which must equal 1 . Therefore $\mathrm{c}=1 / 3$.
Integration of the PDF:

$$
\begin{aligned}
\int_{2}^{4} f_{X}(x) d x & =1 \\
\text { which breaks up to } \int_{2}^{3} 2 c d x+\int_{3}^{4} c d x & =1 \\
=2 c+c & =1 \\
\text { and } c & =1 / 3
\end{aligned}
$$

Figure 1: PDF of X
(ii)

$$
\begin{aligned}
\mathbf{E}[X] & =\int_{2}^{4} x f_{X}(x) d x=\int_{2}^{3} x \cdot 2 / 3 d x+\int_{3}^{4} x \cdot 1 / 3 d x \\
& =1 / 3 \cdot\left(3^{2}-2^{2}\right)+1 / 6 \cdot\left(4^{2}-3^{2}\right)=5 / 3+17 / 6 \\
& =17 / 6
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\int_{2}^{4} x^{2} f_{X}(x) d x=\int_{2}^{3} x^{2} \cdot 2 / 3 d x+\int_{3}^{4} x^{2} \cdot 1 / 3 d x \\
& =2 / 9 \cdot\left(3^{3}-2^{3}\right)+1 / 9 \cdot\left(4^{3}-3^{3}\right)=38 / 9+37 / 9 \\
& =25 / 3
\end{aligned}
$$

(iv) Let $Y=2 X+1$. The range of Y is not from 2 to 4 , but now $5 \leq y \leq 9$. The shape of the PDF of Y should look like the PDF of X, but scaled by a factor such that it normalizes to 1. The range of Y is double the range of X, so the density is half. Plot shown below in Figure 2.
Since $Y=g(X)$ is a linear function of X, we can use the formula for the derived distribution for a linear function. $Y=2 X+1$, so $f_{Y}(y)=\frac{1}{2} f_{X}\left(\frac{y-1}{2}\right)$ for $5 \leq y \leq 9$. Figure 2 matches this distribution.

Figure 2: PDF of $Y=2 X+1$
(b) First we calculate the joint PDF. It should have a non-zero joint density for the region, $2 \leq x \leq 4$ and $2 \leq w \leq 4$. However, it is not uniform within this entire square, as we have seen often in class. Due to the piece-wise uniform density of X, the square is partitioned into two rectangles of uniform joint densities. X and W are independent, so the joint density is just the product of the marginals.

$$
\begin{aligned}
f_{X, W}(x, w) & =f_{X}(x) f_{W}(w) \\
& =f_{X}(x) \cdot 1 / 2 \\
& = \begin{cases}c 1=2 / 3 \cdot 1 / 2=1 / 3 \quad, & 2 \leq x \leq 3,2 \leq w \leq 4 . \\
c 2=1 / 3 \cdot 1 / 2=1 / 6 \quad, & 3 \leq x \leq 4,2 \leq w \leq 4 .\end{cases}
\end{aligned}
$$

Variables $c 1$ and $c 2$ are used to denote the different joint densities, and are shown in the joint plot.
As a check, the joint PDF should be normalized to 1 , which it is.
The joint PDF for X and W is shown in Figure 3.
Looking at the plot of the joint PDF, $\mathbf{P}(X \leq W)$ is the region above the $X=W$ line. See Figure 4. We calculate the probability of interest by weighting the areas of the two parts of the shaded regions by c_{1} and c_{2} :

$$
\begin{aligned}
\mathbf{P}(X \leq W) & =1 / 2 \cdot 1 / 6+3 / 2 \cdot 1 / 3=1 / 12+1 / 2 \\
& =7 / 12
\end{aligned}
$$

The graphical way is the easy solution. Of course, one can integrate:

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Figure 3: Joint PDF of X and W

Figure 4: $\mathbf{P}(X \leq W)$

$$
\begin{aligned}
\mathbf{P}(X \leq W) & =\int_{2}^{3} \int_{x}^{4} 1 / 3 d w d x+\int_{3}^{4} \int_{x}^{4} 1 / 6 d w d x \\
& =\frac{1}{3} \int_{2}^{3}(4-x) d x+\frac{1}{6} \int_{3}^{4}(4-x) d x \\
& =7 / 12
\end{aligned}
$$

(c) Be careful here, that T is the race time measured by the stopwatch, not just the over-estimated race time. Remember also that T and W are independent.

$$
f_{W \mid T}(w \mid 3)=\frac{f_{W, T}(w, 3)}{f_{T}(3)}
$$

where $f_{W, T}(w, 3)=f_{W}(w) f_{T}(3)=10 \cdot 1 / 2=5$ for $2 \leq w \leq 4$.
and where $f_{T}(3)=\int_{3-1 / 10}^{3} f_{W, T}(w, 3) d w=5 \cdot(1 / 10)=1 / 2$.
Therefore,

$$
f_{W \mid T}(w \mid 3)= \begin{cases}10, & \text { if }(3-1 / 10) \leq w \leq 3 \text { and } t=3 \\ 0, & \text { otherwise. }\end{cases}
$$

(d) N is $\operatorname{Normal}(1 / 60,4 / 3600)$. We standardize N to have mean 1 and standard deviation 1 to

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
utilize the Normal table.

$$
\begin{aligned}
\mathbf{P}\left(N>\frac{5}{60}\right) & =1-\mathbf{P}\left(N<\frac{5}{60}\right) \\
& =1-\mathbf{P}\left(\frac{N-1 / 60}{2 / 60}<\frac{5 / 60-1 / 60}{2 / 60}\right) \\
& =1-\Phi(2) .
\end{aligned}
$$

Looking it up, $\Phi(2)=0.9772$.

$$
\text { So, } \mathbf{P}\left(N>\frac{5}{60}\right)=1-0.9772=0.0028
$$

(e) Use derived distributions to find the CDF of S, then differentiate with respect to s to find the PDF of S. The range of S is determined from the range of W. Since $2 \leq w \leq 4$ for a nonzero PDF of $W, 24 / 4 \leq s \leq 24 / 2$ for a nonzero PDF of S.

$$
\begin{aligned}
\mathbf{P}(S \leq s) & =\mathbf{P}(24 / W \leq s)=\mathbf{P}(W \geq 24 / s) \\
& =1-F_{W}(24 / s)=1-\int_{2}^{24 / s} f_{W}(w) d w \\
& =1-(12 / s-1)=2-12 / s
\end{aligned}
$$

Taking the derivative with respect to s ,

$$
\begin{aligned}
f_{S}(s) & =\frac{d}{d s}(2-12 / s) \\
& = \begin{cases}12 / s^{2}, & \text { if } 6 \leq s \leq 12 \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Problem 2.

(a) (i) This is a random sums problem so the mean and variance of A is found using the laws of iterated expectations and total variance.

$$
\begin{aligned}
\mu_{a} & =\mathbf{E}[A]=\mathbf{E}[\mathbf{E}[A \mid N]]=\mathbf{E}\left[N \mathbf{E}\left[A_{i}\right]\right]=\mathbf{E}\left[A_{i}\right] \mathbf{E}[N] \\
& =1 / p . \\
\sigma_{a}^{2} & =\operatorname{var}(A)=\mathbf{E}[\operatorname{var}(A \mid N)]+\operatorname{var}(\mathbf{E}[A \mid N])=\mathbf{E}\left[N \operatorname{var}\left(A_{i}\right)\right]+\operatorname{var}\left(N \mathbf{E}\left[A_{i}\right]\right) \\
& =\operatorname{var}\left(A_{i}\right) \mathbf{E}[N]+\mathbf{E}\left[A_{i}\right]^{2} \operatorname{var}(N)=1 / p+p /(1-p) \\
& =1 / p^{2} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
c_{a b}=\mathbf{E}[A B] & =\mathbf{E}\left[\left(A_{1}+A_{2}+A_{3}+\ldots A_{N}\right)\left(B_{1}+B_{2}+B_{3}+\ldots B_{N}\right)\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\left(A_{1}+A_{2}+A_{3}+\ldots A_{N}\right)\left(B_{1}+B_{2}+B_{3}+\ldots B_{N}\right) \mid N\right]\right] \\
& =\mathbf{E}\left[N \mathbf{E}\left[A_{i}\right] N \mathbf{E}\left[B_{i}\right]\right]=\mathbf{E}\left[N^{2} \mathbf{E}\left[A_{i}\right] \mathbf{E}\left[B_{i}\right]\right]=\mathbf{E}\left[A_{i}\right] \mathbf{E}\left[B_{i}\right] \mathbf{E}\left[N^{2}\right] \\
& =1 \cdot 1 \cdot\left(\operatorname{var}(N)+\mathbf{E}[N]^{2}\right)=(1-p) / p^{2}+1 / p^{2} \\
& =(2-p) / p^{2} .
\end{aligned}
$$

(b) (i) If $N=1, A=A_{1}$, which has a Normal distribution with mean 1 and variance 1 .

If $N=2, A=A_{1}+A_{2}$, which is the sum of two Normals. Therefore the distribution of A is $\operatorname{Normal}(1+1,1+1)$ or $\operatorname{Normal}(2,2)$.
Using total probability theorem, we find:

$$
\begin{aligned}
f_{A}(a) & =f_{A \mid N=1}(a) P_{N}(1)+f_{A \mid N=2}(a) P_{N}(2) \\
& =\operatorname{Normal}(1,1) \cdot 1 / 3+\operatorname{Normal}(2,2) \cdot 2 / 3 \\
& =\frac{1}{3 \sqrt{2 \pi}} e^{-(a-1)^{2} / 2}+\frac{2}{3 \sqrt{4 \pi}} e^{-(a-2)^{2} / 4} .
\end{aligned}
$$

(ii)

$$
\mathbf{P}(N=1 \mid A=a)=\frac{\mathbf{P}(A=a, N=1) \delta}{\mathbf{P}(A=a) \delta}
$$

$$
\text { where } \mathbf{P}(A=a) \delta=f_{A}(a) \text { was found in part (a) }
$$

and the joint is $P(A=a) P(N=1) \delta=f_{A}(a) P_{N}(1)$.

$$
\text { Then, } \mathbf{P}(N=1 \mid A=a)=\frac{\frac{1}{3 \sqrt{2 \pi}} e^{-(a-1)^{2} / 2}}{\frac{1}{3 \sqrt{2 \pi}} e^{-(a-1)^{2} / 2}+\frac{2}{3 \sqrt{4 \pi}} e^{-(a-2)^{2} / 4}} \text {. }
$$

(c) Yes they are equal.

As a first check, they are both random variables. A and B are not independent from one another because they both depend on the RV N for the random sum. But, if we condition on N, then A and B are independent (hence they are conditionally independent). Is that what the right side of the equation states?
These expectations are equal if the PDFs of $A \mid N$ and $A \mid(B, N)$ are equal. Once N is known,

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
knowing B doesn't change what ones knows about A, so this not only shows that A and B are conditionally independent, given N, but $A \mid N$ has the same information as $A, B \mid N$.
Conditional independence of events X and Y on Z is defined as:

$$
\begin{array}{r}
\mathbf{P}(X \cap Y \mid Z)=\mathbf{P}(X \mid Z) \mathbf{P}(Y \mid Z) \\
\text { or, equivalently } \\
\mathbf{P}(X \mid Y \cap Z)=\mathbf{P}(X \mid Z)
\end{array}
$$

Therefore, we show that the equality holds here.

$$
\begin{aligned}
\mathbf{E}[A \mid N] & =\mathbf{E}[A \mid B, N] \\
\int a f_{A \mid N}(a \mid n) d a & =\int a f_{A \mid B, N}(a \mid b, n) d a
\end{aligned}
$$

The above statement is equal if the PDFs are equal:

$$
\begin{aligned}
f_{A \mid N}(a \mid n) & =f_{A \mid B, N}(a \mid b, n)=\frac{f_{A, B, N}(a, b, n)}{f_{B, N}(b, n)} \\
& =\frac{f_{A, B \mid N}(a, b \mid n) P_{N}(n)}{f_{B \mid N}(b \mid n) P_{N}(n)}=\frac{f_{A \mid N}(a \mid n) f_{B \mid N}(b \mid n)}{f_{B \mid N}(b \mid n)} \\
& =f_{A \mid N}(a \mid n) .
\end{aligned}
$$

So $\mathbf{E}[A \mid N]=\mathbf{E}[A \mid B, N]$ is true.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

