Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Fall 2010)

Recitation 21
 November 23, 2010

1. Let X_{1}, \ldots, X_{10} be independent random variables, uniformly distributed over the unit interval $[0,1]$.
(a) Estimate $\mathbf{P}\left(X_{1}+\cdots+X_{10} \geq 7\right)$ using the Markov inequality.
(b) Repeat part (a) using the Chebyshev inequality.
(c) Repeat part (a) using the central limit theorem.
2. Problem 10 in the textbook (page 290)

A factory produces X_{n} gadgets on day n, where the X_{n} are independent and identically distributed random variables, with mean 5 and variance 9 .
(a) Find an approximation to the probability that the total number of gadgets produced in 100 days is less than 440.
(b) Find (approximately) the largest value of n such that

$$
\mathbf{P}\left(X_{1}+\cdots+X_{n} \geq 200+5 n\right) \leq 0.05
$$

(c) Let N be the first day on which the total number of gadgets produced exceeds 1000 . Calculate an approximation to the probability that $N \geq 220$.
3. Let X_{1}, X_{2}, \ldots, be independent Poisson random variables with mean and variance equal to 1 . For any $n>0$, let $S_{n}=\sum_{i=1}^{n} X_{i}$.
(a) Show that S_{n} is Poisson with mean and variance equal to n. Hint: Relate $X_{1}, X_{2}, \ldots, X_{n}$ to a Poisson process with rate 1.
(b) Show how the central limit theorem suggests the approximation

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

for large values of the positive integer n.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

