Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 21 Solutions

November 23, 2010

1. (a) To use the Markov inequality, let $X=\sum_{i=1}^{10} X_{i}$. Then,

$$
\mathbf{E}[X]=10 \mathbf{E}\left[X_{i}\right]=5,
$$

and the Markov inequality yields

$$
\mathbf{P}(X \geq 7) \leq \frac{5}{7}=0.7142
$$

(b) Using the Chebyshev inequality, we find that

$$
\begin{aligned}
2 \mathbf{P}(X-5 \geq 2) & =\mathbf{P}(|X-5| \geq 2) \\
& \leq \frac{\operatorname{var}(X)}{4}=\frac{10 / 12}{4} \\
\mathbf{P}(X-5 \geq 2) & \leq \frac{5}{48}=0.1042
\end{aligned}
$$

(c) Finally, using the Central Limit Theorem, we find that

$$
\begin{aligned}
\mathbf{P}\left(\sum_{i=1}^{10} X_{i} \geq 7\right) & =1-\mathbf{P}\left(\sum_{i=1}^{10} X_{i} \leq 7\right) \\
& =1-\mathbf{P}\left(\frac{\sum_{i=1}^{10} X_{i}-5}{\sqrt{10 / 12}} \leq \frac{7-5}{\sqrt{10 / 12}}\right) \\
& \approx 1-\Phi(2.19) \\
& \approx 0.0143
\end{aligned}
$$

2. Check online solutions.
3. (a) If we interpret X_{i} as the number of arrivals in an interval of length 1 in a Poisson process of rate 1, then, $S_{n}=X_{1}+\cdots+X_{n}$ can be seen as the number of arrivals in an interval of length n in the Poisson process of rate 1. Therefore, S_{n} is a Poisson random variable with mean and variance equal to n.
(b) We use the random variables X_{1}, \ldots, X_{n} and the random variable $S_{n}=X_{1}+\cdots+X_{n}$. Denoting by Z the standard normal, and applying the central limit theorem, we have for

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
large n

$$
\begin{aligned}
\mathbf{P}\left(S_{n}=n\right) & =\mathbf{P}\left(n-1 / 2<S_{n}<n+1 / 2\right) \\
& =\mathbf{P}\left(\frac{-1}{2 \sqrt{n}}<\frac{S_{n}-n}{\sqrt{n}} \leq \frac{1}{2 \sqrt{n}}\right) \\
& \approx \mathbf{P}\left(\frac{-1}{2 \sqrt{n}}<Z \leq \frac{1}{2 \sqrt{n}}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-1 / 2 \sqrt{n}}^{1 / 2 \sqrt{n}} e^{-z^{2} / 2} d z \\
& \left.\approx \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{n}} e^{-z^{2} / 2}\right|_{z=0} \\
& =\frac{1}{\sqrt{2 \pi n}}
\end{aligned}
$$

where the first equation follows from the fact that S_{n} takes integer values, the first approximation is suggested by the central limit theorem, and the second approximation uses the fundamental theorem of calculus (the value of a definite integral over a small interval is equal to the length of the interval times the integrand evaluated at some point within the interval). Since S_{n} is Poisson with mean n, we have

$$
\mathbf{P}\left(S_{n}=n\right)=e^{-n} \frac{n^{n}}{n!},
$$

and by combining the preceding relations, we see that $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.
One may show that

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n} e^{-n} \sqrt{2 \pi n}}=1
$$

so the relative error of the approximation tends to 0 as $n \rightarrow \infty$. A more precise estimate is that

$$
n!=n^{n} e^{-n} \sqrt{2 \pi n} \cdot e^{\lambda_{n}}
$$

where

$$
\frac{1}{12 n+1}<\lambda_{n}<\frac{1}{12 n} .
$$

However, one cannot derive these relations from the central limit theorem.
Note that the form of the approximation was first discovered by de Moivre in the form $n!\approx n^{n+1 / 2} e^{-n}$.(constant), and gave a complicated expression for the constant. De Moivre's friend Stirling subsequently showed that the constant has the simple form $\sqrt{2 \pi}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

