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1. For both parts (a) and (b) we will make use of the formulas:

E[X] = E[E[X|Y ]]

var(X) = E[var(X|Y )] + var(E[X|Y ])

Let X be the number of heads, and let Y be the result of the roll. Note that it can be easily
verified that E[Y ] = 7/2 and V ar(Y ) = 35/12.

(a)

E[X] = E[E[X|Y ] = E[Y/2] =
E[Y ]

2
=

7

4
.

and similarly,

var(X) = E[var(X|Y )] + var(E[X|Y ]) = E[Y/4] + var(Y/2) =
E[Y ]

4
+

var(Y )

4
=

77

48
.

(b) For this part, let X1 be the number of heads that correspond to the first die roll, and
X2 be the number of heads that correspond to the second die roll. Clearly X = X1 +X2

and X1, X2 are iid. Thus we have

E[X] = E[X1 + X2] = 2E[X1] = 2 ·
7

4
=

7

2
.

Similarly,

var(X) = var(X1 + X2) = 2var(X1) = 2 ·
77

48
=

77

24
.

2. (a) Pat only needs to wait for Sam if Pat arrives before 9pm. If Pat arrives after 9pm,
waiting time will simply be zero. Therefore, let T be the waiting time in hours,

∫ 2

0
tfX(x)dx =

∫ 1

0
(1 − x)(

1

2
)dx =

1

2

[

x −
1

2
x2

]1

0
=

1

4

(b) Similar to part a), there are two cases. If Pat arrives before 9pm, the expected duration
of the date will be 3 hours. Otherwise, the expected duration will be 3−X

2 , since the
duration is uniformly distributed between 0 and (3 − X) hours. Therefore,

Expected duration =

∫ 1

0
(3)(

1

2
)dx +

∫ 2

1
(
3 − x

2
)(

1

2
)dx

=
3

2
+

1

4

[

3x −
1

2
x2

]2

1

=
15

8

(c) The probability of having Pat late by more than 45 minutes on a date is 1
8 . Let U be

the expected number of dates they will have before breaking up,
U = Y1 + Y2, where Y1 and Y2 are i.i.d. with geometric distribution (p = 1

8). We know
that E[Y1] = 1

p = 8. Therefore,

E[U ] = E[Y1] + E[Y2] = 16.
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3. Let D be the number of types of drinks the bartender makes, and let M be the number of
people to enter the bar. Let X1, . . . , XN be the respective indicator variables of each drink.
Thus if at least one person orders drink i, then Xi = 1 otherwise it equals 0. Note that
D = X1 + · · · + XN . Thus we have:

E[D] = E[E[D|M = m]]

= E[E[X1 + · · · + XN |M = m]]

= N · E[E[Xi|M = m]

= N · E
[

1 −

(

N − 1

N

)m ]

= N − N · E
[

(

N − 1

N

)m ]

(letting z = N−1
N ) = N − N · E[Zm]

= N − N
∞
∑

k=0

zk ·
λke−λ

k!

= N − Ne−λ · eλz

= N − Ne−
λ

N

4. (a) From the definition of expectation: E[Yg(X) | X] =
∑

y yg(X)pY |X(y|x)
= g(X)

∑

y ypY |X(y|x)
= g(X)E[Y | X]

(b) Show that
E [E[Y | X, Z] | X] = E[Y | X] = E [E[Y | X] | X, Z]

Since
E[Y | X, Z] =

∑

y

yp(Y = y|X = x, Z = z)

From Law of Total Expectation E[E[Y | X, Z] | X] =
∑

z

∑

y yp(Y = y|X = x, Z =
z)p(X = x, Z = z|X = x)

=
∑

z

∑

y y p(Y =y,X=x,Z=z)
p(X=x,Z=z) · p(X=x,Z=z)

p(X=x)

=
∑

z

∑

y y p(Y =y,X=x,Z=z)
p(X=x)

=
∑

z

∑

y y p(Y =y,X=x,Z=z)
p(X=x)

=
∑

y y p(Y =y,X=x)
p(X=x)

= E[Y | X] From the Pull Through Property in part a. Let

g(X) = E[Y | X] and E[1 | Z] = 1

So, g(X)E[1 | Z] = E[g(x) | X, Z]
= E[E[Y | X] | X, Z] The Pull-Through and Tower Properties are not limited to discrete
random variables. These properties are also true in the continuous case. We can prove
this by using the same approach we used for the discrete case.

5. (a) Since E[X] = 0, We have E[E[X|Y ]] = E[X] = 0. Hence

cov(X, E[X | Y ]) = E[XE[X | Y ]] = E[E[XE[X | Y ] | Y ]] = E[(E[X | Y ])2] ≥ 0.
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(b) We can actually prove a stronger statement than what is asked for in the problem,
namely that both pairs of random variables have the same covariance (from which it
immediately follows that their correlation coefficients have the same sign. We have

cov(Y, E[X | Y ]) = E[Y E[X | Y ]] = E[E[XY | Y ]] = E[XY ] = cov(X, Y ).

6. (a) The transform MJ(s) given is a transform of a binomial random variable with parameters
n = 10 and p = 2

3 . Thus the PMF for J is:

pJ(j) =

(

n
j

)

(
1

3
)n−j(

2

3
)j for j = 0, 1, 2, ...10

(b) Again by inspection, K is a geometric random variable shifted to the right by 3 with

parameter p = 1
5 . This is because we can rewrite MK(s) = e3s

1
5
es

1− 4
5
es

. Thus,

pK(k) = (
4

5
)k−4 1

5
for k = 4, 5, 6, ...

E[K] = 3 +
1

p
= 3 + 5 = 8

Var(K) =
1 − p

p2
=

4
5
1
25

= 20

(c) Note that L = K1 + K2 + ...KJ , thus L is a random sum of random variables. So,
determining the transform of L is easier than determining the PMF for L.

ML(s) = MJ(s) |es=MK(s)= (
1

3
+

2

3
(

1
5e4s

1 − 4
5es

))10

The expectation of L is E[L] = E[K]E[J ] = 8 ∗ 20
3 = 160

3

The variance of L is

Var(L) = Var(K)E[J ] + Var(J)(E[K])2 = (20)(10 ∗
2

3
) + (10 ∗

2

3
∗

1

3
)(64) =

2480

9

(d) P(person donates) = 1
4 . Let M = total # of donors from all living groups, and define

Xi =

{

1 if ith person donates
0 otherwise.

The PMF for X is just

pX(x) =

{

1
4 if x = 1
3
4 if x = 0.

Then,

M = X1 + X2 + ...XL.

Therefore the transform of M is:
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MM (s) = ML(s) |es=MX(s)

The transform of X is (by inspection)

MX(s) = (
3

4
+

1

4
es)

Therefore,

MM (s) = (
1

3
+

2

3
(

1
5(3

4 + 1
4es)4

1 − 4
5(3

4 + 1
4es)

))10

To obtain P(M = 0), we simply evaluate the transform of M at es = 0.

pM (0) = MM (s) |es=0= (
1

3
+

2

3
(

1
5(3

4)4

1 − 4
5(3

4)
))10.

The expectation of M is E[M ] = E[X]E[L] = 40
3

The variance of M is

Var(M) = Var(X)E[L] + Var(L)(E[X])2 = 27.22

7. (a) Let the random variable T represent the number of widgets in 1 crate and let Ki represent
the number of widgets in the ith carton.

T = K1 + K2 + ... + KN

The transform of T is obtained by substituting the transform of N for every value of es

in the transform of K.
MT (s) = MN (s) |es=MK(s)

MT (s) =
(1 − p)eµ(es−1)

1 − peµ(es−1)
.

Since T is a non-negative discrete random variable,

P (T = 1) =
d

des
MT (s) |es=0

=
µ(1 − p)e−µ

(1 − pe−µ)
+

µp(1 − p)e−2µ

(1 − pe−µ)2
.

Since T is a non-negative discrete random variable, we can solve this problem using a
different method.

MT (s) = pT (0) + pT (1)es + pT (2)e2s + pT (3)e3s + . . .

MT (s) − pT (0) = pT (1)es + pT (2)e2s + pT (3)e3s + . . .

MT (s) − pT (0)

es
= pT (1) + pT (2)es + pT (3)e2s + . . .

pT (1) = lim
s→−∞

MT (s) − pT (0)

es
.
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We can find pT (0) by taking the limit of the transform as s → −∞.

pT (0) = lim
s→−∞

MT (s) =
(1 − p)e−u

1 − pe−u
.

Substituting pT (0) and MT (s) to find pT (1) we get,

pT (1) = lim
s→−∞

(1 − p)e−µ{eµes

(1 − pe−µ) − (1 − peµ(es−1))}

es(1 − peµ(es−1))(1 − pe−µ)

If we take the limit now the numerator and denominator both evaluate to 0. Therefore,
we need to take the derivative of the numerator and denominator before we evaluate the
limit.

pT (1) = lim
s→−∞

(1 − p)e−µ

(1 − pe−µ)

[

(1 − pe−µ)µeµes

+ µpeµ(es−1)

(1 − peµ(es−1)) − es(µpeµ(es−1))

]

pT (1) =
(1 − p)e−µ

(1 − pe−µ)

[

(1 − pe−µ)µ + µpe−µ

(1 − pe−µ)

]

pT (1) =
µ(1 − p)e−µ

(1 − pe−µ)
+

µp(1 − p)e−2µ

(1 − pe−µ)2
.

(b) Since K and N are independent,

E[T ] = E[K]E[N ] =
µ

1 − p
,

and
var(T ) = var(K)E[N ] + (E[K])2var(N)

=
µ

1 − p
+

µ2p

(1 − p)2
.

(c) Let W be the total weight of the widgets in a random crate.

W = X1 + X2 + ... + XT

The transform of W is
MW (s) = MT (s) |es=MX(s)

MW (s) =
(1 − p)eµ( λ

λ−s
−1)

1 − peµ( λ

λ−s
−1)

.

(d) Since X and T are independent,

E[W ] = E[X]E[T ] =
µ

(1 − p)λ
,

and
var(w) = var(X)E[T ] + (E[X])2var(T )

1

λ2

(

2µ

(1 − p)
+

µ2p

(1 − p)2

)
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8. (a) P(|X1| ≤ δ) ≈ αδ.

P(−δ ≤ X1 ≤ δ) =
∫ δ
−δ fX1(x)dx1 = 2δ · fX1(0) = δ · 1√

2π
e−

1
2 .

α = 1√
2π

e−
1
2 .

(b) E[X1N ] = E[X1]E[N ] = 3
2 · 2 = 3.

(c) var(X1N) = E[X2
1N2] − (E[X1N ])2 = (4 + 4)3 − 32 = 15.

(d)

E[X1 + · · · + XN ] = E[X1 + · · · + XN | N ≥ 2]P(N ≥ 2) +

E[X1 + · · · + XN | N < 2]P(N < 2).

3 = E[X1 + · · · + XN | N ≥ 2](1 − p) + E[X1](p).

E[X1 + · · · + XN | N ≥ 2] = 3(3 − 2(2/3)) = 5.

(e) Let Z = N + X1 + · · · + XN . Note that N and X1 + · · · + XN are NOT independent.

MZ(s) = E[E[es(N+X1+···+XN )|N ]] = E[E[esN · es(X1+···+XN )|N ]] = E[esN (MX(s))N ]
= E[(esMX(s))N ] = MN (s)|es=esMX(s).

MN (s) = (2/3)es

1−(1/3)es .

MX(s) = e2s2+2s.

MZ(s) = (2/3)ese2s
2+2s

1−(1/3)ese2s2+2s
= 2e2s

2+3s

3−e2s2+3s
.

9. (a) Let X = T1 + T2 + ... + TN where N is a binomial with parameters p = 2
3 and n = 12.

E[Ti] = 1
λ = 1

3 , thus, Ti is an exponential with rate λ = 3, so fTi
(t) = 3e−3t with t ≥ 0.

E[X] = E[Ti]E[N ] = 1
3 ∗ 12 ∗ 2

3 = 8
3

var(X) = var(Ti)E[N ] + (E[Ti])
2var(N) = 1

9 ∗ 12 ∗ 2
3 + 1

9 ∗ 12 ∗ 2
3 ∗ 1

3 = 32
27

(b) The fact that Iwana spends AT LEAST 1
6 of an hour on each question shifts the transform

in t by 1
6 , thus fTi

(t) = 3e−3(t− 1
6
) for t ≥ 1

6 . We know that a shift by t in the pdf domain

leads to a multiplation by ets in the transform domain. Therefore, the new MTi
(s) = 3e

s

6

3−s .
Thus we have,

MX(s) = MN (s)|es=MTi
(s) =

(

1

3
+

2

3

3e
s

6

(s − 3)

)12

(c) By the law of iterated expectations, E[N ] = E[E[N |P ]]. We can compute E[N |P ] from
the fact that N is a binomial with parameter P , where P is a random variable uniformly
distributed between 0 and 1. Thus E[N ] = E[12P ] = 12E[P ] = 12 ∗ 1

2 = 6

We compute the var(N) using the law of conditional variance: var(N) = E[var(N |P )]+
var(E[N |P ]) = E[12P (1 − P )] + var(12P )
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= 12E[P (1 − P )] + 144var(P )
= 12(1/2 − 1/3) + 12 = 14.

(d)

MN (s) = E[E[esN |P ]] = E[MP (s)] = E[1−P+Pes] = 1−E[P ]+esE[P ] = 1−
1

2
+

1

2
es =

1

2
+

1

2
es

10. Let At (respectively, Bt) be a Bernoulli random variable which is equal to 1 if and only if the
tth toss resulted in 1 (respectively, 2). We have E[AtBt] = 0 and E[AtBs] = E[At]E[Bs] =
p1p2 for s 6= t. We have

E[X1X2] = E[(A1 + · · · + An)(B1 + · · · + Bn)] = nE[A1(B1 + · · · + Bn)] = n(n − 1)p1p2,

and
cov(X1, X2) = E[X1X2] − E[X1]E[X2] = n(n − 1)p1p2 − np1np2 = −np1p2.

11. (a) Here it is easier to find the PDF of Y . Since Y is the sum of independent Gaussian
random variables, Y is Gaussian with mean 2µ and variance 2σ2

X + σ2
Z .

(b) i. The transform of N is

MN (s) =
1

11
(1 + es + e2s + · · · + e10s) =

1

11

10
∑

k=0

eks

Since Y is the sum of

• a random sum of Gaussian random variables

• an independent Gaussian random variable,

MY (s) =

(

MN (s)|es=MX(s)

)

MZ(s) =

(

1

11

10
∑

k=0

(esµ+
s
2

σ
2
X

2 )k
)

e
s
2

σ
2
Z

2

=

(

1

11

10
∑

k=0

eskµ+
s
2

kσ
2
X

2

)

e
s
2

σ
2
Z

2

=
1

11

10
∑

k=0

eskµ+
s
2(kσ

2
X

+σ
2
Z

)

2

In general, this is not the transform of a Gaussian random variable.

ii. One can differentiate the transform to get the moments, but it is easier to use the
laws of iterated expectation and conditional variance:

EY = EXEN + EZ = 5µ

var(Y ) = ENvar(X) + (EX2)var(N) + var(Z) = 5σ2
X + 10µ2 + σ2

Z

iii. Now, the new transform for N is

MN (s) =
1

9
(e2s + · · · + e10s) =

1

9

10
∑

k=2

eks
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Therefore,

MY (s) =

(

MN (s)|es=MX(s)

)

MZ(s) =

(

1

9

10
∑

k=2

(esµ+
s
2

σ
2
X

2 )k
)

e
s
2

σ
2
Z

2

=

(

1

9

10
∑

k=2

eskµ+
s
2

kσ
2
X

2

)

e
s
2

σ
2
Z

2

=
1

9

10
∑

k=2

eskµ+
s
2(kσ

2
X

+σ
2
Z

)

2

(c) Given Y , the linear least-squared estimator of Xk is given by

X̂k = EXk +
cov(Xk, Y )

var(Y )
(Y − EY )

= µ +
cov(Xk, Y )

var(Y )
(Y − EY ).

To determine the mean and variance of Y we first determine those of N :

EN =

(

1

4
10 +

3

4
5

)

=
25

4
var(N) = Evar(N |timeofday) + var(EN |timeofday)

= 10 +
75

16
=

235

16

Now

EY = EEY |N = ENEX + EZ

= ENEX =
25

4
µ

var(Y ) = ENvar(X) + (EX2)var(N) + var(Z)

=
25

4
σ2

X +
235

16
µ2 + σ2

Z

cov(Xk, Y ) = E(Xk − µ)(Y − 25µ/4)

= EE(Xk − µ)(Y − 25µ/4)|N

Since

E(Xk − µ)(Y − 25µ/4)|N =

{

σ2
X if N ≥ k,

0 otherwise

then

cov(Xk, Y ) = σ2
XP (N ≥ k)

= σ2
X

{

0.25 ∗
∑

k
10ke−10

k! + 0.7511−k
11 if k ≤ 10

0.25 ∗
∑

k
10ke−10

k! if k > 10
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