Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

Problem Set 8 Solutions

1. Let A_{t} (respectively, B_{t}) be a Bernoulli random variable that is equal to 1 if and only if the t th toss resulted in 1 (respectively, 2). We have $\mathbf{E}\left[A_{t} B_{t}\right]=0$ (since $A_{t} \neq 0$ implies $B_{t}=0$) and

$$
\mathbf{E}\left[A_{t} B_{s}\right]=\mathbf{E}\left[A_{t}\right] \mathbf{E}\left[B_{s}\right]=\frac{1}{k} \cdot \frac{1}{k} \quad \text { for } \quad s \neq t
$$

Thus,

$$
\begin{aligned}
\mathbf{E}\left[X_{1} X_{2}\right] & =\mathbf{E}\left[\left(A_{1}+\cdots+A_{n}\right)\left(B_{1}+\cdots+B_{n}\right)\right] \\
& =n \mathbf{E}\left[A_{1}\left(B_{1}+\cdots+B_{n}\right)\right]=n(n-1) \cdot \frac{1}{k} \cdot \frac{1}{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =\mathbf{E}\left[X_{1} X_{2}\right]-\mathbf{E}\left[X_{1}\right] E\left[X_{2}\right] \\
& =\frac{n(n-1)}{k^{2}}-\frac{n^{2}}{k^{2}}=-\frac{n}{k^{2}} .
\end{aligned}
$$

2. (a) The minimum mean squared error estimator $g(Y)$ is known to be $g(Y)=\mathbf{E}[X \mid Y]$. Let us first find $f_{X, Y}(x, y)$. Since $Y=X+W$, we can write

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{2}, & \text { if } x-1 \leq y \leq x+1 \\ 0, & \text { otherwise }\end{cases}
$$

and, therefore,

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) \cdot f_{X}(x)=\left\{\begin{array}{cl}
\frac{1}{10}, & \text { if } x-1 \leq y \leq x+1 \text { and } 5 \leq x \leq 10 \\
0, & \text { otherwise }
\end{array}\right.
$$

as shown in the plot below.

We now compute $\mathbf{E}[X \mid Y]$ by first determining $f_{X \mid Y}(x \mid y)$. This can be done by looking at the horizontal line crossing the compound PDF. Since $f_{X, Y}(x, y)$ is uniformly distributed in the defined region, $f_{X \mid Y}(x \mid y)$ is uniformly distributed as well. Therefore,

$$
g(y)=\mathbf{E}[X \mid Y=y]=\left\{\begin{array}{cl}
\frac{5+(y+1)}{2}, & \text { if } 4 \leq y<6 \\
y, & \text { if } 6 \leq y \leq 9 \\
\frac{10+(y-1)}{2}, & \text { if } 9<y \leq 11
\end{array}\right.
$$

The plot of $g(y)$ is shown here.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(b) The linear least squares estimator has the form

$$
g_{L}(Y)=\mathbf{E}[X]+\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}}(Y-\mathbf{E}[Y]),
$$

where $\operatorname{cov}(X, Y)=\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]$. We compute $\mathbf{E}[X]=7.5, \mathbf{E}[Y]=\mathbf{E}[X]+$ $\mathbf{E}[W]=7.5, \sigma_{X}^{2}=(10-5)^{2} / 12=25 / 12, \sigma_{W}^{2}=(1-(-1))^{2} / 12=4 / 12$ and, using the fact that X and W are independent, $\sigma_{Y}^{2}=\sigma_{X}^{2}+\sigma_{W}^{2}=29 / 12$. Furthermore,

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\
& =\mathbf{E}[(X-\mathbf{E}[X])(X-\mathbf{E}[X]+W-\mathbf{E}[W])] \\
& =\mathbf{E}[(X-\mathbf{E}[X])(X-\mathbf{E}[X])]+\mathbf{E}[(X-\mathbf{E}[X])(W-\mathbf{E}[W])] \\
& =\sigma_{X}^{2}+\mathbf{E}[(X-\mathbf{E}[X])] \mathbf{E}[(W-\mathbf{E}[W])]=\sigma_{X}^{2}=25 / 12
\end{aligned}
$$

Note that we use the fact that $(X-\mathbf{E}[X])$ and $(W-\mathbf{E}[W])$ are independent and $\mathbf{E}[(X-\mathbf{E}[X])]=0=\mathbf{E}[(W-\mathbf{E}[W])]$. Therefore,

$$
g_{L}(Y)=7.5+\frac{25}{29}(Y-7.5)
$$

The linear estimator $g_{L}(Y)$ is compared with $g(Y)$ in the following figure. Note that $g(Y)$ is piecewise linear in this problem.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

3. (a) The Chebyshev inequality yields $\mathbf{P}(|X-7| \geq 3) \leq \frac{9}{3^{2}}=1$, which implies the uninformative/useless bound $\mathbf{P}(4<X<10) \geq 0$.
(b) We will show that $\mathbf{P}(4<X<10)$ can be as small as 0 and can be arbitrarily close to 1 . Consider a random variable that equals 4 with probability $1 / 2$, and 10 with probability $1 / 2$. This random variable has mean 7 and variance 9 , and $\mathbf{P}(4<X<10)=0$. Therefore, the lower bound from part (a) is the best possible.
Let us now fix a small positive number ϵ and another positive number c, and consider a discrete random variable X with PMF

$$
p_{X}(x)= \begin{cases}0.5-\epsilon, & \text { if } x=4+\epsilon \\ 0.5-\epsilon, & \text { if } x=10-\epsilon \\ \epsilon, & \text { if } x=7-c \\ \epsilon, & \text { if } x=7+c\end{cases}
$$

This random variable has a mean of 7 . Its variance is

$$
(0.5-\epsilon)(3-\epsilon)^{2}+(0.5-\epsilon)(3-\epsilon)^{2}+2 \epsilon c^{2}
$$

and can be made equal to 9 by suitably choosing c. For this random variable, we have $\mathbf{P}(4<X<10)=1-2 \epsilon$, which can be made arbitrarily close to 1 .
On the other hand, this probability can not be made equal to 1 . Indeed, if this probability were equal to 1 , then we would have $|X-7| \leq 3$, which would imply that the variance in less than 9 .
4. Consider a random variable X with PMF

$$
p_{X}(x)= \begin{cases}p, & \text { if } x=\mu-c ; \\ p, & \text { if } x=\mu+c ; \\ 1-2 p, & \text { if } x=\mu\end{cases}
$$

The mean of X is μ, and the variance of X is $2 p c^{2}$. To make the variance equal σ^{2}, set $p=\frac{\sigma^{2}}{2 c^{2}}$. For this random variable, we have

$$
\mathbf{P}(|X-\mu| \geq c)=2 p=\frac{\sigma^{2}}{c^{2}}
$$

and therefore the Chebyshev inequality is tight.
5. Note that n is deterministic and H is a random variable.
(a) Use X_{1}, X_{2}, \ldots to denote the (random) measured heights.

$$
\begin{aligned}
H & =\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \\
\mathbf{E}[H] & =\frac{\mathbf{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{n \mathbf{E}[X]}{n}=h \\
\sigma_{H} & =\sqrt{\operatorname{var}(H)}=\sqrt{\frac{n \operatorname{var}(X)}{n^{2}}} \quad \text { (var of sum of independent } \text { r.v.s is sum of vars) } \\
& =\frac{1.5}{\sqrt{n}}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(b) We solve $\frac{1.5}{\sqrt{n}}<0.01$ for n to obtain $n>22500$.
(c) Apply the Chebyshev inequality to H with $\mathbf{E}[H]$ and $\operatorname{var}(H)$ from part (a):

$$
\begin{aligned}
& \mathbf{P}(|H-h| \geq t) \leq\left(\frac{\sigma_{H}}{t}\right)^{2} \\
& \mathbf{P}(|H-h|<t) \geq 1-\left(\frac{\sigma_{H}}{t}\right)^{2}
\end{aligned}
$$

To be " 99% sure" we require the latter probability to be at least 0.99 . Thus we solve

$$
1-\left(\frac{\sigma_{H}}{t}\right)^{2} \geq 0.99
$$

with $t=0.05$ and $\sigma_{H}=\frac{1.5}{\sqrt{n}}$ to obtain

$$
n \geq\left(\frac{1.5}{0.05}\right)^{2} \frac{1}{0.01}=90000
$$

(d) The variance of a random variable increases as its distribution becomes more spread out. In particular, if a random variable is known to be limited to a particular closed interval, the variance is maximized by having 0.5 probability of taking on each endpoint value. In this problem, random variable X has an unknown distribution over [0,3]. The variance of X cannot be more than the variance of a random variable that equals 0 with probability 0.5 and 3 with probability 0.5 . This translates to the standard deviation not exceeding 1.5.
In fact, this argument can be made more rigorous as follows.
First, we have

$$
\operatorname{var}(X) \leq \mathbf{E}\left[\left(X-\frac{3}{2}\right)^{2}\right]=\mathbf{E}\left[X^{2}\right]-3 \mathbf{E}[X]+\frac{9}{4}
$$

since $\mathbf{E}\left[(X-a)^{2}\right]$ is minimized when a is the mean (i.e., the mean is the least-squared estimator).
Second, we also have

$$
0 \leq \mathbf{E}[X(3-X)]=\mathbf{E}[X]-\mathbf{E}\left[X^{2}\right]
$$

since the variable has support in $[0,3]$. Adding the above two inequalities, we have

$$
\operatorname{var}(X) \leq \frac{9}{4}
$$

or equivalently, $\sigma_{X} \leq \frac{3}{2}$.
6. First, let's calculate the expectation and the variance for Y_{n}, T_{n}, and A_{n}.

$$
\begin{aligned}
Y_{n} & =(0.5)^{n} X_{n} \\
T_{n} & =Y_{1}+Y_{2}+\cdots+Y_{n} \\
A_{n} & =\frac{1}{n} T_{n}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

$$
\begin{aligned}
\mathbf{E}\left[Y_{n}\right] & =\mathbf{E}\left[\left(\frac{1}{2}\right)^{n} X_{n}\right]=\left(\frac{1}{2}\right)^{n} \mathbf{E}\left[X_{n}\right]=\mathbf{E}[X]\left(\frac{1}{2}\right)^{n}=2\left(\frac{1}{2}\right)^{n} \\
\operatorname{var}\left(Y_{n}\right) & =\operatorname{var}\left(\left(\frac{1}{2}\right)^{n} X_{n}\right)=\left(\frac{1}{2}\right)^{2 n} \operatorname{var}\left(X_{n}\right)=\operatorname{var}(X)\left(\frac{1}{2}\right)^{2 n}=9\left(\frac{1}{4}\right)^{2 n} \\
\mathbf{E}\left[T_{n}\right] & =\mathbf{E}\left[Y_{1}+Y_{2}+\cdots+Y_{n}\right]=\mathbf{E}\left[Y_{1}\right]+\mathbf{E}\left[Y_{2}\right]+\cdots+\mathbf{E}\left[Y_{n}\right] \\
& =2 \sum\left(\frac{1}{2}\right)^{i}=2 \frac{0.5\left(1-0.5^{n}\right)}{1-0.5}=2\left(1-\left(\frac{1}{2}\right)^{n}\right) \\
\operatorname{var}\left(T_{n}\right) & =\operatorname{var}\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right)=\sum_{i=1}^{n}\left(\frac{1}{4}\right)^{i} \operatorname{var}\left(X_{i}\right) \\
& =9\left(\frac{\frac{1}{4}\left(1-\left(\frac{1}{4}\right)^{n}\right)}{1-\frac{1}{4}}\right)=3\left(1-\left(\frac{1}{4}\right)^{n}\right) \\
\mathbf{E}\left[A_{n}\right] & =\mathbf{E}\left[\frac{1}{n} T_{n}\right]=\frac{1}{n} \mathbf{E}\left[T_{n}\right]=\frac{2}{n}\left(1-\left(\frac{1}{2}\right)^{n}\right) \\
\operatorname{var}\left(A_{n}\right) & =\operatorname{var}\left(\frac{1}{n} T_{n}\right)=\left(\frac{1}{n}\right)^{2} \operatorname{var}\left(T_{n}\right)=\frac{3}{n^{2}}\left(1-\left(\frac{1}{4}\right)^{n}\right)
\end{aligned}
$$

(a) Yes. Y_{n} converges to 0 in probability. As n becomes very large, the expected value of Y_{n} approaches 0 and the variance of Y_{n} approaches 0 . So, by the Chebychev Inequality, Y_{n} converges to 0 in probability.
(b) No. Assume that T_{n} converges in probability to some value a. We also know that:

$$
\begin{aligned}
T_{n} & =Y_{1}+\left(Y_{2}+Y_{3}+\ldots . . Y_{n}\right) \\
& =Y_{1}+\left((0.5)^{2} X_{2}+(0.5)^{3} X_{3}+\cdots+(0.5)^{n} X_{n}\right) \\
& =Y_{1}+\frac{1}{2}\left(0.5 X_{2}+(0.5)^{2} X_{3}+\cdots+(0.5)^{n-1} X_{n}\right) .
\end{aligned}
$$

Notice that $0.5 X_{2}+(0.5)^{2} X_{3}+\cdots+(0.5)^{n-1} X_{n}$ converges to the same limit as T_{n} when n goes to infinity. If T_{n} is to converge to a, Y_{1} must converge to $a / 2$. But this is clearly false, which presents a contradiction in our original assumption.
(c) Yes. A_{n} converges to 0 in probability. As n becomes very large, the expected value of A_{n} approaches 0 , and the variance of A_{n} approaches 0 . So, by the Chebychev Inequality, A_{n} converges to 0 in probability. You could also show this by noting that the $A_{n} \mathrm{~s}$ are i.i.d. with finite mean and variance and using the WLLN.
7. (a) Suppose Y_{1}, Y_{2}, \ldots converges to a in mean of order p. This means that $\mathbf{E}\left[\left|Y_{n}-a\right|^{p}\right] \rightarrow 0$, so to prove convergence in probability we should upper bound $\mathbf{P}\left(\left|Y_{n}-a\right| \geq \epsilon\right)$ by a multiple of $\mathbf{E}\left[\left|Y_{n}-a\right|^{p}\right]$. This connection is provided by the Markov inequality.
Let $\epsilon>0$ and note the bound

$$
\mathbf{P}\left(\left|Y_{n}-a\right| \geq \epsilon\right)=\mathbf{P}\left(\left|Y_{n}-a\right|^{p} \geq \epsilon^{p}\right) \leq \frac{\mathbf{E}\left[\left|Y_{n}-a\right|^{p}\right]}{\epsilon^{p}}
$$

where the first step is a manipulation that does not change the event under consideration and the second step is the Markov inequality applied to the random variable $\left|Y_{n}-a\right|^{p}$. Since the inequality above holds for every n,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|Y_{n}-a\right| \geq \alpha\right) \leq \lim _{n \rightarrow \infty} \frac{E\left[\left|Y_{n}-a\right|^{p}\right]}{\alpha^{p}}=0
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

Hence, we have that $\left\{Y_{n}\right\}$ converges in probability to a.
(b) Consider the sequence $\left\{Y_{n}\right\}_{n=1}^{\infty}$ of random variables where

$$
Y_{n}= \begin{cases}0, & \text { with probability1 }-\frac{1}{n} \\ n, & \text { with probability } \frac{1}{n}\end{cases}
$$

Note that $\left\{Y_{n}\right\}$ converges in probability to 0 , but $E\left[\left|Y_{n}-0\right|^{1}\right]=E\left[Y_{n} \mid\right]=1$ for all n. Hence, $\left\{Y_{n}\right\}$ converges in probability to 0 but not in mean of order 1.
G1 ${ }^{\dagger}$. (a) $\mathbf{E}[\hat{\mu}]=\mathbf{E}\left[\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right]=\frac{1}{n}\left(\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]\right)=\frac{1}{n} \cdot n \mathbf{E}[X]=\mu$. Hence, $\hat{\mu}$ is an an unbiased estimator for the true mean μ.
(b)

$$
E\left[\hat{\sigma}^{2}\right]=\mathbf{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left[\left(X_{i}-\mu\right)^{2}\right]=\frac{1}{n} \cdot n \sigma^{2}=\sigma^{2} .
$$

Therefore $\hat{\sigma}^{2}$ (which uses the true mean) is unbiased estimator for σ^{2}.
(c)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2} & =\sum_{i=1}^{n}\left[X_{i}-\mu-(\hat{\mu}-\mu)\right]^{2} \\
& =\sum_{i=1}^{n}\left[\left(X_{i}-\mu\right)^{2}+(\hat{\mu}-\mu)^{2}-2\left(X_{i}-\mu\right)(\hat{\mu}-\mu)\right] \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+n(\hat{\mu}-\mu)^{2}-2(\hat{\mu}-\mu) \sum_{i=1}^{n}\left(X_{i}-\mu\right) \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+n(\hat{\mu}-\mu)^{2}-2(\hat{\mu}-\mu) n(\hat{\mu}-\mu) \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n(\hat{\mu}-\mu)^{2}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\mathbf{E}\left[\sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2}\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]-n \mathbf{E}\left[(\hat{\mu}-\mu)^{2}\right] \\
& =n \sigma^{2}-n \mathbf{E}\left[\frac{1}{n^{2}}\left(\sum_{i=1}^{n} X_{i}-\mu\right)^{2}\right] \\
& =n \sigma^{2}-\frac{1}{n} \mathbf{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\
& =n \sigma^{2}-\frac{1}{n} \mathbf{E}\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right] \\
& =(n-1) \sigma^{2}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
where we used the fact that for $i \neq j, \mathbf{E}\left[\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]=0$; and for $i=j$, it is is equal to σ^{2}.
(e) From part (d),

$$
\hat{\hat{\sigma}}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2}
$$

is an unbiased estimator for the variance.
(f)

$$
\begin{aligned}
\operatorname{var}(\hat{\mu}) & =\operatorname{var}\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right) \\
& =\frac{1}{n^{2}}\left(\operatorname{var}\left(X_{1}\right)+\cdots+\operatorname{var}\left(X_{n}\right)\right) \\
& =\frac{1}{n^{2}} \cdot n \sigma^{2} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

Thus, $\operatorname{var}(\hat{\mu})$ goes to zero asymptotically. Furthermore, we saw that $\mathbf{E}[\hat{\mu}]=\mu$. Simple application of Chebyshev inequality shows that $\hat{\mu}$ converges in probability to μ (the true mean) as the sample size increases.
(g) Not yet typeset.

