Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

Solutions for Problem Set 11:
 Topic: Markov Processes

Due: May 12, 2006

1. (a) We define a Markov chain with states $0,1, \cdots, m$, corresponding to the number of customers in the house. Assume that $m q<1$, the transition probability graph is given as follows,

(b) For the above Markov Chain, the local balance equations are

$$
\pi_{i} p=\pi_{i+1}(i+1) q, \quad i=0,1, \cdots, m-1 .
$$

We define $\rho=p / q$, and obtain $\pi_{i+1}=\frac{\rho}{i+1} \pi_{i}$, which leads to

$$
\pi_{i}=\frac{\rho^{i}}{i!} \pi_{0}, \quad i=0,1, \cdots, m-1
$$

By using the normalization equation, $1=\pi_{0}+\pi_{1}+\cdots+\pi_{m}$, we obtain

$$
1=\pi_{0}\left(1+\frac{\rho^{1}}{1!}+\frac{\rho^{2}}{2!}+\cdots+\frac{\rho^{m}}{m!}\right)
$$

and

$$
\pi_{0}=\frac{1}{\sum_{k=0}^{m} \frac{\rho^{k}}{k!}} .
$$

Using the equation $\pi_{i}=\frac{\rho^{i}}{i!} \pi_{0}$, the steady-state probabilities are

$$
\pi_{i}=\frac{\frac{\rho^{i}}{i!}}{\sum_{k=0}^{m} \frac{\rho^{k}}{k!}} .
$$

Therefore, the average number of customers in the house is given by

$$
\bar{N}=\sum_{i=0}^{m} i \pi_{i}=\rho * \frac{\sum_{i=0}^{m-1} \frac{\rho^{i}}{i!}}{\sum_{k=0}^{m} \frac{\rho^{k}}{k!}} .
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

2. (a) Denote by (x, y) the score of Sam and Pat respectively, a Markov chain that describes the game is

Note that the game ends when either state $(0,2)$ or $(2,0)$ is entered.
(b) Since we have a finite number of states, a state is recurrent if and only if it is accessible from all the states that are accessible from it, and therefore, states $(0,0),(0,1)$ and $(1,0)$ are transient and states $(0,2)$ and $(2,0)$ are recurrent.
(c) The probability that Pat wins is the probability that we get absorbed to state (0,2). Setting up the equations, we solve for $a_{(1,0)}, a_{(0,0)}$ and $a_{(0,1)}$

$$
\begin{aligned}
a_{(0,1)} & =\frac{2}{3}+\frac{1}{3} a_{(0,0)} \\
a_{(0,0)} & =\frac{2}{3} a_{(0,1)}+\frac{1}{3} a_{(1,0)} \\
a_{(1,0)} & =\frac{2}{3} a_{(0,0)}
\end{aligned}
$$

which yields that following

$$
\begin{aligned}
& a_{(0,1)}=\frac{14}{15} \\
& a_{(0,0)}=\frac{12}{15} \\
& a_{(1,0)}=\frac{8}{15}
\end{aligned}
$$

Therefore the probability of Pat winning is equal to $12 / 15=0.8$.

