6.041: Probabilistic Systems Analysis 6.431: Applied Probability

Prof. Munther A. Dahleh

Course Outline

- Introductions
- Recitation Assignment
- Tutorial Assignment
- Text Book
- Introduction to Probability: Bertsekas and Tsitsiklis
- Grading Policy:
- Q1: 25\%,
- Q2: 25\%,
- Final: 35\%,
- Homework: 10\%,
- Participation: 5\%.
- Homework Policy
- Read the General Information Handout

LECTURE 1

- Readings: Sections 1.1, 1.2

Lecture outline

- Motivation
- Sample space of an experiment
- Examples
- Axioms of probability
- More examples

Motivation

- Why do we study probability theory?
- An effective model of uncertainty
- Decision Making under uncertainty
- Examples:
- Measurement sensors
- Waiting time at a Bank's teller.
- Value of a stock at a given day.
- Outcome of a medical procedure.
- A customer buying behavior.
- One Decision Making Process: Collect Data, Model the Phenomenon, Extrapolate and make decisions.

From Frequency to Probability (1)

- The time of recovery (Fast, Slow, Unsuccessful) from an ACL knee surgery was seen to be a function of the patient's age (Young, Old) and weight (Heavy, Light). The medical department at MIT , data:

	S,Fast	S,Slow	U
Y,L	1000	150	50
Y,H	500	300	100
O,L	400	400	200
O,H	200	600	300

From Frequency to Probability (2)

	S, Fast	S, Slow	U
Y,L	1000	150	50
Y,H	500	300	100
O,L	400	400	200
O,H	200	600	300

- What is the "likelihood" that a 40 years old man (Old!) will have a successful surgery with a speedy recovery?
- If a patient undergoes an operation, what is the "likelihood" that the result is unsuccessful?
- Need a measure of "likelihood".
- Ingredients: Sample space, Events, Probability.

Think of Probability as Frequency....

Sample Space

- List of possible outcomes
- List must be:
- Mutually exclusive
- Collectively exhaustive
- At the "right" granularity

Sample Space Example (1)

- Two rolls of a tetrahedral die
- Sample space vs. sequential description

1,1

Sample Space Example (2)

- A continuous sample space: (x, y) such that $0 \leq x, y \leq 1$

Axioms of probability

- Event: a subset of the sample space
- Probability is assigned to events
- Axioms:

1. $P(A) \geq 0$
2. P (universe) $=1$
3. If $A \cap B=\emptyset$, then $P(A \cup B)=P(A)+P(B)$
$P\left(\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\right)=P\left(s_{1}\right)+\cdots+P\left(s_{k}\right)$

- Axiom 3 needs strengthening
- Do weird sets have probabilities?

Example (1) Revisited

- Let every possible outcome have probability $\frac{1}{16}$

$$
P(X=1)=1 / 4
$$

- Define $Z=\min (X, Y)$

$$
\begin{aligned}
& P(Z=1)=7 / 16 \\
& P(Z=2)=5 / 16 \\
& P(Z=3)=3 / 16 \\
& P(Z=4)=1 / 16
\end{aligned}
$$

$Z=\min (X, Y)$

Discrete Uniform Law

- Let all sample points be equally likely
- Then,

$$
P(A)=\frac{\text { number of elements of } A}{\text { total number of sample points }}
$$

- Just count ...

Example (2) Revisited

- Each of two people choose a number between zero and one. What is the probability that they are at most $1 / 4$ apart?
- Draw sample space and event of interest:

- Need to choose a probability law:
- Choose uniform law: probability = area

The probability is: $1-(3 / 4) \cdot(3 / 4)=7 / 16$

A Word About Infinite Sample Spaces

- Sample space: $\{1,2, \ldots\}$
- We are given $P(n)=2^{-n}$
- Find P (outcome is even)
- Solution: $P(\{2,4,6, \ldots\})=P(2)+P(4)+\cdots$

$$
=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\cdots=\frac{1}{3}
$$

- Axiom needed:

If A_{1}, A_{2}, \ldots are disjoint events, then:

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

Probability and the "Real World"

- Probability is a branch of math:
- Axioms \Rightarrow Theorems
- One theorem: Frequency of event A is $P(A)$
- But are probabilities frequencies?
$-P($ coin toss yields heads $)=1 / 2$
- $P($ The Iliad was written by Homer $)=0.95$
- P (a piece of equipment aboard the space shuttle fails) $=10^{-8}$
- Probability models as a way of describing uncertainty:
- Use for consistent reasoning
- Use for predictions, decisions

