6.041: Probabilistic Systems Analysis 6.431: Applied Probability

Prof. Munther A. Dahleh

Course Outline

- Introductions
- Recitation Assignment
- Tutorial Assignment
- Text Book
 - Introduction to
 Probability: Bertsekas
 and Tsitsiklis

- Grading Policy:
 - Q1: 25%,
 - Q2: 25%,
 - Final: 35%,
 - Homework: 10%,
 - Participation: 5%.
- Homework Policy
- Read the General Information Handout

LECTURE 1

• Readings: Sections 1.1, 1.2

Lecture outline

- Motivation
- Sample space of an experiment
 - Examples
- Axioms of probability
 - More examples

Motivation

- Why do we study probability theory?
 - An effective model of uncertainty
 - Decision Making under uncertainty
- Examples:
 - Measurement sensors
 - Waiting time at a Bank's teller.
 - Value of a stock at a given day.
 - Outcome of a medical procedure.
 - A customer buying behavior.
- One Decision Making Process: Collect Data, Model the Phenomenon, Extrapolate and make decisions.

From Frequency to Probability (1)

The time of recovery (Fast, Slow, Unsuccessful) from an ACL knee surgery was seen to be a function of the patient's age (Young, Old) and weight (Heavy, Light). The medical department at MIT data:

	S,Fast	S,Slow	U
Y,L	1000	150	50
Y,H	500	300	100
O,L	400	400	200
O,H	200	600	300

From Frequency to Probability (2)

	S, Fast	S, Slow	U
Y,L	1000	150	50
Y,H	500	300	100
O,L	400	400	200
O,H	200	600	300

- What is the "likelihood" that a 40 years old man (Old!) will have a successful surgery with a speedy recovery?
- If a patient undergoes an operation, what is the "likelihood" that the result is unsuccessful?
- Need a measure of "likelihood".
- Ingredients: Sample space, Events, Probability.

Think of Probability as Frequency....

Sample Space

- List of possible outcomes
- List must be:
 - Mutually exclusive
 - Collectively exhaustive
 - At the "right" granularity

Sample Space Example (1)

- Two rolls of a tetrahedral die
 - Sample space vs. sequential description

 $^{1,1}_{1,2}$

1,3

1,4

I

2

3

4

Sample Space Example (2)

• A continuous sample space: (x, y) such that $0 \le x, y \le 1$

Axioms of probability

- Event: a subset of the sample space
- Probability is assigned to events
- Axioms:
 - 1. $P(A) \ge 0$
 - 2. P(universe) = 1
 - 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

$$P(\{s_1, s_2, \dots, s_k\}) = P(s_1) + \dots + P(s_k)$$

- Axiom 3 needs strengthening
- Do weird sets have probabilities?

Example (1) Revisited

• Let every possible outcome have probability $\frac{1}{16}$

P(X = 1) = 1/4

• Define $Z = \min(X, Y)$

$$P(Z = 1) = 7/16$$

 $P(Z = 2) = 5/16$
 $P(Z = 3) = 3/16$
 $P(Z = 4) = 1/16$

Discrete Uniform Law

- Let all sample points be equally likely
- Then,

$$P(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}}$$

• Just count ...

Example (2) Revisited

- Each of two people choose a number between zero and one. What is the probability that they are at most 1/4 apart?
- Draw sample space and event of interest:

Choose uniform law: probability = area

The probability is: 1-(3/4).(3/4)=7/16

A Word About Infinite Sample Spaces

- Sample space: {1, 2, ...}
 - We are given $P(n) = 2^{-n}$
 - Find *P*(outcome is even)
- Solution: $P(\{2,4,6,\ldots\}) = P(2) + P(4) + \cdots$ = $\frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}$
- Axiom needed: If A_1, A_2, \ldots are disjoint events, then: $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$

Probability and the "Real World"

- Probability is a branch of math:
 - Axioms \Rightarrow Theorems
 - One theorem: Frequency of event A is P(A)
- But are probabilities frequencies?
 - P(coin toss yields heads) = 1/2
 - P(The Iliad was written by Homer) = 0.95
 - $P(a \text{ piece of equipment aboard the space shuttle fails}) = 10^{-8}$
- Probability models as a way of describing uncertainty:
 - Use for consistent reasoning
 - Use for predictions, decisions