LECTURE 2

- Readings: Sections 1.3, 1.4

Lecture outline

- Review
- Conditional Probability
- Three important tools:
- Total probability theorem
- Bayes' rule
- Multiplication rule

Example 0: Radar

- Radar device, with 3 readings:
- Low (0), Medium (?), High (1)
- Probabilistic Modeling:
- Sample Space / Outcomes:
- Airplane Presence + Radar Reading
- Probability Law:

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

Example 0: Radar
 (continued)

- Questions:
- What is the probability that the radar reads a medium level (?) if there are no airplanes?
- What is the probability of having an airplane?
- What is the probability of the airplane being there if the radar reads low (0)?
- When should we decide there is an airplane, and when should we decide there is none?

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

Conditional Probability

- $\mathbf{P}(A \mid B)=$ probability of A given that B occurred.
- B becomes our universe

- Definition: Assuming $\mathbf{P}(B) \neq 0$, we have:

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}
$$

- Consequences: If $\mathbf{P}(A) \neq 0, \mathbf{P}(B) \neq 0$ then

$$
\mathbf{P}(A \cap B)=\mathbf{P}(B) \cdot \mathbf{P}(A \mid B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)
$$

Example 0: Radar

(continued)

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

- Event "Present" = Plane is present. - $P($ Medium|Present $)=$

Example 1: Die Roll

(Modeled in Lecture 1 using joint probability law)

- Let B be the event: $\min (X, Y)=2$
- Let $M=\max (X, Y)$

$$
\begin{aligned}
& \mathbf{P}(M=1 \mid B)= \\
& \mathbf{P}(M=2 \mid B)=
\end{aligned}
$$

Total Probability Theorem

- Divide and conquer.
- Partition of sample space into A_{1}, A_{2}, and A_{3}.

- One way of computing $\mathbf{P}(B)$:

$$
\begin{aligned}
\mathbf{P}(B)= & \mathbf{P}\left(A_{1}\right) \mathbf{P}\left(B \mid A_{1}\right) \\
& +\mathbf{P}\left(A_{2}\right) \mathbf{P}\left(B \mid A_{2}\right) \\
& +\mathbf{P}\left(A_{3}\right) \mathbf{P}\left(B \mid A_{3}\right)
\end{aligned}
$$

Radar Example:
$\mathrm{P}($ Present $)=$

Bayes' Rule

- Rules for combining evidence ("inference").
- We have "prior" probabilities: $\mathbf{P}\left(A_{i}\right)$
- For each i, we know:
$\mathbf{P}\left(B \mid A_{i}\right)$
- We wish to compute:
$\mathbf{P}\left(A_{i} \mid B\right)$

$$
\begin{aligned}
\mathbf{P}\left(A_{i} \mid B\right) & =\frac{\mathbf{P}\left(A_{i} \cap B\right)}{P(B)} \\
& =\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\mathbf{P}(B)} \\
& =\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\sum_{j} \mathbf{P}\left(A_{j}\right) \mathbf{P}\left(B \mid A_{j}\right)}
\end{aligned}
$$

Radar Example: P(Present|Low) $=$

Example 2: Coin Tosses (Modeled using conditional probabilities)

- Look at 3 tosses of a biased coin:
$\mathbf{P}(H)=p, \mathbf{P}(T)=1-p$

$\mathbf{P}(T H T)=$
$\mathbf{P}(1$ head $)=$

$\mathbf{P}($ first toss is $H \mid 1$ head $)=$

Example 0: Decision Rule

- Given the radar reading, what is the best decision about the plane?
- Criterion for decision:
- Minimize "Probability of Error"
- Decision rules:
- Decide absent or present for each reading.
- What is the optimal decision region?

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

Example 0: Decision Rule

(continued)

- $\mathrm{P}($ Error $)=$?
- Error=\{Present and decision is absent\} or \{Absent and decision is present\}
- Disjoint event!
- $\mathrm{P}($ Error $)=$

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	$\underline{0.05}$
Present	$\underline{0.02}$	$\underline{0.08}$	0.20

Multiplication Rule

$\mathbf{P}(A \cap B \cap C)=\mathbf{P}(A) \mathbf{P}(B \mid A) \mathbf{P}(C \mid A \cap B)$

Example 3: Three cards are drawn from a 52-card deck. What's the probability that none of these cards is a heart?
Let $A_{i}=i^{\text {th }}$ card not a heart. Then:

$$
\mathbf{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2} \mid A_{1}\right) \mathbf{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)
$$

