LECTURE 3

- Readings: Sections 1.5

Lecture outline

- Review
- Independence of two events
- Independence of a collection of events

Review

$\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$, assuming $\mathbf{P}(B)>0$.

- Multiplication rule:
$\mathbf{P}(A \cap B)=\mathbf{P}(B) \cdot \mathbf{P}(A \mid B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Total probability theorem:

$$
\mathbf{P}(B)=\mathbf{P}(A) \mathbf{P}(B \mid A)+\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B \mid A^{c}\right)
$$

- Bayes rule:

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\mathbf{P}(B)}
$$

Extended Radar Example

- Threat alert affects the outcome (0) © (1)

$\mathrm{P}(\cdots \mid$ Threat $)$	Radar Airplane	Low(0)	Medium(?)	High(1)
	Absent	0.1125	0.05	0.0125
	Present	0.055	0.22	0.55
P($\cdots \mid$ No Threat $)$	Airplane Radar	Low(0)	Medium(?)	High(1)
	Absent	0.45	0.20	0.05
	Present	0.02	0.08	0.20

$\bullet \mathbf{P}($ Threat $)=$ Prior probability of threat $=p$

Extended Radar Example

 (continued)- $\mathrm{A}=$ Airplane, $\mathrm{R}=$ Radar Reading
$\mathbf{P}(A, R)=\mathbf{P}($ Threat $) \mathbf{P}(A, R \mid$ Threat $)+\mathbf{P}($ No Threat $) \mathbf{P}(A, R \mid$ No Threat $)$
- If we let $p=\mathbf{P}$ (Threat), then we get:

$\mathbf{P}(A, R)$| Radar | | Low (0) | Medium(?) |
| :--- | :---: | :---: | :---: |
| Airplane | High (1) | | |
| Absent | $0.45-$ | $0.20-0.15 p$ | $0.05-$ |
| | $0.3375 p$ | $0.0375 p$ | |
| Present | $0.02+0.014$ | $0.08+0.14 p$ | $0.20+35 p$ |

Extended Radar Example

 (continued)$\mathbf{P}(A, R)$

Airplane Radar	Low(0)	Medium(?)	High(1)
Absent	$0.45-$ $0.3375 p$	$0.20-0.15 p$	$0.05-$ $0.0375 p$
Present	$0.02+0.014$ $5 p$	$0.08+0.14 p$	$0.20+35 p$

- Given the Radar registered High, and a plane was absent, What is the probability that there was a threat?
- How does the decision region behave, as a function of p ?

Independence of Two Events

- Definition: $\mathbf{P}(A \cap B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Recall:
- Independence of B from A :
$\mathbf{P}(B \mid A)=\mathbf{P}(B)$
- By symmetry, $\mathbf{P}(A \mid B)=\mathbf{P}(A)$
- Examples:
- A and B are disjoint.
- Independence of A^{c} and B.
$-\mathbf{P}(A \mid B)=\mathbf{P}\left(A \mid B^{c}\right)$

Conditioning may affect independence

- Assume A and B are independent:

- If we are told that C occurred, are A and B independent?

Conditioning may affect independence

- Example 1:
- Two independent fair ($p=1 / 2$) coin tosses.
- Event A: First toss is H
- Event B : Second toss is H
$-\mathbf{P}(A)=\mathbf{P}(B)=1 / 2$

- Event C : The two outcomes are different.
- Conditioned on C, are A and B independent?

Conditioning may affect independence

- Example 2:
- Choice between two unfair coins, with equal probability.
$-\mathbf{P}(H \mid$ coin 1$)=0.9$, $\mathbf{P}(H \mid$ coin 2$)=0.1$
- Keep tossing the chosen coin. 0.5

- If we know we chose coin A?
- If we do not know which coin we chose?
- Compare: \mathbf{P} (toss $11=H$)
$\mathbf{P}($ toss $11=H \mid$ first 10 tosses are H$)$

Independence of a Collection of Events

- Intuitive definition:
- Information about some of the events tells us nothing about probabilities related to remaining events.
- Example: $\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right) \mid A_{5} \cap A_{6}^{c}\right)$

$$
=\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right)\right)
$$

- Mathematical definition:
- For any distinct i, j, \ldots, q :

$$
\mathbf{P}\left(A_{i} \cap A_{j} \cap \cdots \cap A_{q}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right) \cdots \mathbf{P}\left(A_{q}\right)
$$

Independence vs. Pairwise Independence

- Example 1 Revisited:
- Two independent fair $(p=1 / 2)$ coin tosses.
- Event A: First toss is H
- Event B : Second toss is H
- Event C: The two outcomes are different.
- $\mathbf{P}(C)=\mathbf{P}(A)=\mathbf{P}(B)=\frac{1}{2}$
- $\mathbf{P}(C \cap A)=\frac{1}{4}$
- $\mathbf{P}(C \mid A \cap B)=0$
- Pairwise independence does not imply independence.

The King's Sibling

- The king comes from a family of two children.
- What is the probability that his sibling is female?

