LECTURE 3

• Readings: Sections 1.5

Lecture outline

- Review
- Independence of two events
- Independence of a collection of events

Review

 $P(A | B) = \frac{P(A \cap B)}{P(B)}$, assuming P(B) > 0.

• Multiplication rule:

 $\mathbf{P}(A \cap B) = \mathbf{P}(B) \cdot \mathbf{P}(A \mid B) = \mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$

• Total probability theorem:

 $\mathbf{P}(B) = \mathbf{P}(A)\mathbf{P}(B \mid A) + \mathbf{P}(A^{c})\mathbf{P}(B \mid A^{c})$

• Bayes rule:

$$\mathbf{P}(A_i \mid B) = \frac{\mathbf{P}(A_i)\mathbf{P}(B \mid A_i)}{\mathbf{P}(B)}$$

Extended Radar Example

• Threat alert affects the outcome ^{© (}

$\mathbf{P}(\cdots Threat)$	Radar Airplane	Low(0)	Medium(?)	High(1)
	Absent	0.1125	0.05	0.0125
	Present	0.055	0.22	0.55
	Padar			
P(… No ⊤hreat)	Airplane	Low(0)	Medium(?)	High(1)
	Absent	0.45	0.20	0.05
				0.20

•P(Threat)=Prior probability of threat= p

Extended Radar Example

• A=Airplane, R=Radar Reading

P(A, R) = P(Threat)P(A, R|Threat) + P(No Threat)P(A, R|No Threat)

• If we let p = P(Threat), then we get:

P(A,R)	Radar Airplane	Low(0)	Medium(?)	High(1)
	Absent	0.45- 0.3375 <i>p</i>	0.20-0.15 <i>p</i>	0.05- 0.0375 <i>p</i>
	Present	0.02+0.014 5 <i>p</i>	0.08+0.14 <i>p</i>	0.20+35 <i>p</i>

$\mathbf{P}(A,R)$	Radar Airplane	Low(0)	Medium(?)	High(1)
	Absent	0.45- 0.3375 <i>p</i>	0.20-0.15 <i>p</i>	0.05- 0.0375 <i>p</i>
	Present	0.02+0.014 5 <i>p</i>	0.08+0.14 <i>p</i>	0.20+35 <i>p</i>

- Given the Radar registered High, and a plane was absent, What is the probability that there was a threat?
- How does the decision region behave, as a function of p?

Independence of Two Events

- Definition: $P(A \cap B) = P(A) \cdot P(B|A)$
- Recall:
 - Independence of *B* from *A*: P(B|A) = P(B)

- By symmetry, P(A|B) = P(A)

- Examples:
 - A and B are disjoint.
 - Independence of A^c and B. - $P(A|B) = P(A|B^c)$

Conditioning may affect independence

• Assume A and B are independent:

• If we are told that *C* occurred, are *A* and *B* independent?

Conditioning may affect independence

- Example 1:
 - Two independent fair $(p=\frac{1}{2})$ coin tosses.
 - Event A: First toss is H
 - Event B: Second toss is H

- Event C: The two outcomes are different.
- Conditioned on C, are A and B independent?

Conditioning may affect independence

- Choice between two unfair coins, with equal probability.
- P(H|coin 1) = 0.9,P(H|coin 2) = 0.1
- Keep tossing the chosen coin.
- Are future tosses independent:
 - If we know we chose coin A?
 - If we do not know which coin we chose?
 - Compare: P(toss 11 = H)

P(toss 11 = H| first 10 tosses are H)

0.9

0.9

0.1

0.9

Coin1

0.5

0.5

Coin 2

0.1

0.9

0.1

0.1

0.9

0.1

0.9

Independence of a Collection of Events

- Intuitive definition:
 - Information about some of the events tells us nothing about probabilities related to remaining events.

- Example:
$$P(A_1 \cap (A_2^c \cup A_3) \mid A_5 \cap A_6^c)$$

= $P(A_1 \cap (A_2^c \cup A_3))$

- Mathematical definition:
 - For any distinct i, j, \ldots, q :

 $\mathbf{P}(A_i \cap A_j \cap \cdots \cap A_q) = \mathbf{P}(A_i)\mathbf{P}(A_j) \cdots \mathbf{P}(A_q)$

Independence vs. Pairwise Independence

- Example 1 Revisited:
 - Two independent fair $(p=\frac{1}{2})$ coin tosses.
 - Event A: First toss is H
 - Event B: Second toss is H
 - Event C: The two outcomes are different.
- $P(C) = P(A) = P(B) = \frac{1}{2}$
- $P(C \cap A) = \frac{1}{4}$
- $\mathbf{P}(C \mid A \cap B) \stackrel{\cdot}{=} \mathbf{0}$

HH HT TH TT

В

Pairwise independence
does not imply independence.

The King's Sibling

- The king comes from a family of two children.
- What is the probability that his sibling is female?