LECTURE 4

- Readings: Sections 1.6

Lecture outline

- Principles of counting
- Many examples
- Binomial probabilities

Discrete Uniform Law

- Let all sample points be equally likely.
- Then,
$\mathbf{P}(A)=\frac{\text { number of elements of } A}{\text { total number of sample points }}$
- Just count...

Basic Counting Principle

- r steps
- n_{i} choices at step i
- Number of choices is:

$$
n_{1} n_{2} \cdots n_{r}
$$

- Number of license plates with 3 letters a 4 digits =
- ... if repetition is prohibited =
- Permutations: Number of ways of ordering n elements is=
- Number of subsets of $\{1, \ldots, n\}=$

Example

- Probability that six rolls of a six-sided die all give different numbers?
- Number of outcomes that make the event happen=
- Number of elements in the sample space=
- Answer=

Combinations

- $\binom{n}{k}$: number of k-element subsets of a given n element set.
- Two ways of constructing an ordered sequence of k distinct items:
- Choose the k items one at a time:

$$
n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!} \text { choices }
$$

- Choose k items, then order them (k ! possible orders)
- Hence: $\binom{n}{k} \cdot k!=\frac{n!}{(n-k)!} \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- Identity: $\sum_{k=0}^{n}\binom{n}{k}=$

Summary: Different Ways of Sampling

Draw k balls from an urn with n numbered balls.

- Sampling with replacement and ordering:
- Sampling without replacement and ordering:
- Sampling w/o replacement and w/o ordering:
- Sampling w/ replacement and w/o ordering:

Binomial Probabilities

- n independent coin tosses
$-\mathbf{P}(H)=p$
$\mathbf{P}(H T T H H H)=$
$\mathbf{P}($ sequence $)=p^{\# \text { heads }}(1-p)^{\# \text { tails }}$
$\mathbf{P}(k$ heads $)=\sum_{k}$ head seq. \mathbf{P} (seq. $)$

$$
\begin{aligned}
& =(\# \text { of } k \text {-head seqs. }) \cdot p^{k}(1-p)^{n-k} \\
& =\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Coin Tossing Problem

- Event B: 3 out of 10 tosses were "heads".
- What is the (conditional) probability that the first 2 tosses were heads, given that B occurred?
- All outcomes in conditioning set B are equally likely:
- Probability: $p^{3}(1-p)^{7}$
- Conditional probability law is uniform.
- Number of outcomes in B :
- Out of the outcomes in B, how many start with HH ?

Partitions

- 52-card deck, dealt to 4 players.
- Find \mathbf{P} (each gets an ace)
- Count size of the sample space (possible combination of "hands")
- Count number of ways of distributing the four aces: 4-3 2
- Count number of ways of dealing the remaining 48 cards
- Answer:

