## LECTURE 5

- Readings: Sections 2.1-2.3, start 2.4


## Lecture outline

- Random variables
- Probability mass function (pmf)
- Binomial Random Variable
- Expectation
- Example


## Random Variables - 1

- An assignment of a value (number) to every possible outcome.
- Mathematically: A function from the sample space to the real numbers:
- Discrete or Continuous
- Can have several random variables defined on the same sample space


## Random Variables - 2

- Notation:
- Random Variable

X

- Experimental Value $x$
- Example: 1 coin toss. Define $X$ :

$$
X(H)=1, X(T)=0
$$

- Example: $Y=g(X)$


## Random Variables - 3

- Temperature in Boston on Feb 22.
- Length of queue at Laverde
- Amount of water in a "tall Americano"
- The number of points the Celtics score in a game they win
- The number of words in your emails


## Probability mass function (pmf)

- ("probability law",
"probability distribution")
- Notation: $p_{X}(x)=\mathrm{P}(X=x)$
- Example: $X=$ number of coin tosses until first head
- Assume independent tosses, $\mathbf{P}(H)=p>0$

$$
\begin{aligned}
p_{X}(k) & =\mathbf{P}(X=k) \\
& =\mathbf{P}(T T \cdots T H) \\
& =(1-p)^{k-1} p, \quad k=1,2, \cdots
\end{aligned}
$$

## How to compute a pmf $p_{X}(x)$

- Collect all possible outcomes fro which $X$ is equal to $x:\{w \in$ Sample Space $\mid X(w)=x\}$
- Add their probabilities.
- Repeat for all $x$.
- Example: Two independent throws of a fair tetrahedral die:
- $F$ : outcome of first throw
- $S$ : outcome of second throw

$$
L=\min (F, S)
$$

$$
p_{L}(2)=\frac{5}{16}
$$



F $=$ First roll

## Binomial pmf

- $X$ : number of heads in $n$ independent coin tosses
- $\mathbf{P}(H)=p$
- Let $n=4$
- $p_{X}(2)=\mathbf{P}(H H T T)+\mathbf{P}(H T H T)+\mathbf{P}(H T T H)$ $+\mathbf{P}(T H H T)+\mathbf{P}(T H T H)+\mathbf{P}(T T H H)$
$=6 p^{2}(1-p)^{2}$
$=\binom{4}{2} p^{2}(1-p)^{2}$
In general:

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \cdots, n
$$

## Expectation

- Definition: $\mathrm{E}[X]=\sum_{x} x \cdot p_{X}(x)$
- Interpretations:
- Center of gravity of pmf.
- Average in large number of repetitions of the experiment. (to be substantiated later in this course)
- Example: Uniform on $0,1, \ldots, n$



## Properties of Expectations - 1

- Let $X$ be a r.v. and let $Y=g(X)$
- Hard: $\mathbf{E}[Y]=\sum_{y} y \cdot p_{Y}(y)$
- Easy: $\mathrm{E}[Y]=\sum_{x} g(x) \cdot p_{X}(x)$
- "Second Moment": $\mathrm{E}\left[X^{2}\right]$
- Caution: In general, $\mathrm{E}[g(X)] \neq g(E[X])$
- Variance: $\operatorname{var}(X)=\mathrm{E}\left[(X-\mathbf{E}[X])^{2}\right]$

$$
=\sum_{x}(x-\mathrm{E}[X])^{2} \cdot p_{X}(x)
$$

## Properties of Expectations - 2

- If $\alpha, \beta$ are constants, then:

$$
\begin{array}{ll}
- & \mathbf{E}[\alpha]= \\
- & \mathbf{E}[\alpha X]= \\
- & \mathbf{E}[\alpha X+\beta]=
\end{array}
$$

## Average Speed vs. Average Time - 1

$\begin{aligned} & \text { - } \begin{array}{l}\text { Traverse a } 200 \text { mile } \\ \text { distance at constant } \\ \text { but random speed } V:\end{array} \\ & p_{V}(\mathrm{v})\end{aligned} \underbrace{1 / 2}_{1} \quad 1 / 2 \underset{\mathrm{v}}{1 / 2}$

- $d=200, T=t(V)=200 / V$

$$
\begin{aligned}
-\quad \mathrm{E}[V] & =1 \cdot(1 / 2)+200 \cdot(1 / 2)=100.5 \\
-\quad \mathrm{E}[T] & =\mathrm{E}[t(V)]=\sum_{v} t(v) \cdot p_{V}(v) \\
& =\frac{200}{1} \cdot \frac{1}{2}+\frac{200}{200} \cdot \frac{1}{2}=100.5
\end{aligned}
$$

## Average Speed vs. Average Time - 2

$$
\begin{aligned}
& \mathrm{E}[T] \cdot \mathrm{E}[V] \neq 200=d=\mathrm{E}[T V] \\
& \mathrm{E}[T] \neq 200 / \mathrm{E}[V] . \\
& \operatorname{var}(V)=\sum_{v}(v-\mathrm{E}[V])^{2} \cdot p_{V}(v) \\
& \quad=(1-100.5)^{2} \frac{1}{2}+(200-100.5)^{2} \frac{1}{2} \\
& \quad \approx 10,000
\end{aligned}
$$

- Standard Deviation $\sigma_{V}=\sqrt{\operatorname{var}(V)} \approx 100$.

