## LECTURE 7

- Readings: Finish Chapter 2


## Lecture outline

- Joint PMFs
- Independent random variables
- More expectations, variances
- Binomial distribution revisited
- The hat problem
- Application: Point-to-Point Communication


## Review

- Random Variables and PMF
- Expectation
- Variance
- Examples:
- Binomial, Geometric, and Poisson


## Joint PMFs

- $p_{X, Y}(x, y)=\mathbf{P}(X=x$ and $Y=y)$


$$
\text { - } p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

$$
\text { - } p_{X \mid Y}(x \mid y)
$$

$$
=\mathbf{P}(X=x \mid Y=y)
$$

$$
=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

- $\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$
- $\sum_{x} p_{X \mid Y}(x \mid y)=1$


## Independent Random Variables

$p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y \mid X}(y \mid x) p_{Z \mid X, Y}(z \mid x, y)$

- Random variables $X, Y$ and $Z$ are independent if (for all $x, y$ and $z$ ):

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) \cdot p_{Y}(y) \cdot p_{Z}(z)
$$

- Example: Independent?
- What if we condition on $X \leq 2$ and $Y \geq 3$ ?

| y | $4$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1/20 | 2/20 | 2/20 |  |
| 3 | 2/20 | 4/20 | 1/20 | 2/20 |
| 2 |  | 1/20 | 3/20 | 1/20 |
| 1 |  | 1/20 |  |  |
|  | 1 | 2 | 3 | 4 |

## Expectations

$$
\begin{gathered}
\mathbf{E}[X]=\sum_{x} x \cdot p_{X}(x) \\
\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) \cdot p_{X, Y}(x, y)
\end{gathered}
$$

- In general: $\mathbf{E}[g(X, Y)] \neq g(\mathbf{E}[X], \mathbf{E}[Y])$
- $\mathbf{E}[\alpha X+\beta)]=\alpha \mathbf{E}[X]+\beta$
- $\mathrm{E}[X+Y+Z]=\mathrm{E}[X]+\mathrm{E}[Y]+\mathrm{E}[Z]$
- If $X$ and $Y$ are independent:

$$
\begin{aligned}
& -\mathrm{E}[X \cdot Y]=\mathrm{E}[X] \cdot \mathbf{E}[Y] \\
& -\mathrm{E}[g(X) \cdot h(Y)]=\mathrm{E}[g(X)] \cdot \mathrm{E}[h(Y)]
\end{aligned}
$$

## Variances

- $\operatorname{var}(a X)=a^{2} \operatorname{var}(X)$
- $\operatorname{var}(X+a)=\operatorname{var}(X)$
- Let $Z=X+Y$. If $X$ and $Y$ independent: $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$
- Examples:
- If $X=Y, \operatorname{var}(X+Y)=4 \operatorname{var}(X)$
- If $X=-Y, \operatorname{var}(X+Y)=0$
- If $X, Y$ indep., and $Z=X-3 Y$, $\operatorname{var}(Z)=\operatorname{var}(X)+9 \operatorname{var}(Y)$


## Binomial Mean and Variance

- $X=$ \# of successes in $n$ independent trials
- Probability of success: $p$

$$
\mathrm{E}[X]=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- $X_{i}= \begin{cases}1, & \text { if success in trial } i, \\ 0, & \text { otherwise }\end{cases}$ 0 , otherwise
- $\mathrm{E}\left[X_{i}\right]=p$
- $\operatorname{var}\left(X_{i}\right)=p-p^{2}$
- $\mathrm{E}[X]=n p$
- $\operatorname{var}(X)=n p(1-p)$


## The Hat Problem

- $n$ people throw their hats in a box and then pick one at random.
- $X$ : number of people who get their own hat
- Find $\mathbf{E}[X]$

$$
X_{i}= \begin{cases}1, & \text { if } i \text { selects own hat }, \\ 0, & \text { otherwise } .\end{cases}
$$

- $X=X_{1}+X_{2}+\cdots+X_{n}$
- $\mathrm{P}\left(X_{i}=1\right)=\frac{1}{n}$
- $\mathrm{E}\left[X_{i}\right]=\frac{1}{n}$
- Are the $X_{i}$ independent? No
- $\mathrm{E}[X]=n\left(\frac{1}{n}\right)=1$


## Variance in the Hat Problem

- $\operatorname{var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\mathrm{E}\left[X^{2}\right]-1$

$$
X^{2}=\sum_{i} X_{i}^{2}+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i} X_{j}
$$

- $\mathrm{E}\left[X_{i}^{2}\right]=\frac{1}{n}$

$$
\mathbf{P}\left(X_{1} X_{2}=1\right)
$$

$$
=\mathbf{P}\left(X_{1}=1\right) \cdot \mathbf{P}\left(X_{2}=1 \mid X_{1}=1\right)=\left(\frac{1}{n}\right)\left(\frac{1}{n-1}\right)
$$

$\mathrm{E}\left[X^{2}\right]=n \frac{1}{n}+n(n-1)\left(\frac{1}{n}\right)\left(\frac{1}{n-1}\right)=2$

- $\operatorname{var}(X)=1$


## Challenge: BBall Party

Your Guests are all BBall fans and they wear BBall Caps. There is a total of $s$ teams in the league. Everyone of your guests is equally likely to be a fan of any one of these teams.

Compute the expected number of people who will pick a cap from their own team!

## A Communication Example Introduction



- A point-to-point communication system.
- Probabilistic model:
- Messages are independent binary r.v.s.
- The encoder is a deterministic function.
- The channel introduces errors. It is modeled as a conditional pmf.
- The decoder is a deterministic function.


## A Communication Example Messages, Encoding

Source
Messages


- Messages: I.I.D. Bernoulli r.v.s $M_{1}, M_{2}, \cdots$

$$
M_{i}= \begin{cases}1, & \text { with probability } \mathrm{p} \\ 0, & \text { with probability } 1-\mathrm{p}\end{cases}
$$

- Encoding:

Repeat $n$ times,

$$
\begin{aligned}
& \{0,1\} \longmapsto\{0,1\}^{n} \\
& 0 \longrightarrow 00 \cdots 0 \\
& 1 \longrightarrow 11 \cdots 1
\end{aligned}
$$

## A Communication Example Channel-1 <br> 

- Encoded bits are transmitted independently one by one through the channel.
- The channel flips each bit independently, and with "crossover" probability $e$.
- Pictorially:



## A Communication Example Channel - 2 <br> 

- Mathematically:

$$
p_{Y \mid X}(y \mid x)= \begin{cases}1-e & \text { If } x=y . \\ e & \text { If } x \neq y .\end{cases}
$$

- Multiple transmissions: $X_{1}, X_{2}, \cdots$

$$
\begin{gathered}
Y_{1}, Y_{2}, \cdots \\
\mathbf{P}_{Y_{1}, Y_{2}, \cdots \mid X_{1}, X_{2}, \cdots\left(y_{1}, y_{2}, \cdots \mid x_{1}, x_{2}, \cdots\right)}^{=\mathbf{P}_{Y \mid X}\left(y_{1} \mid x_{1}\right) \cdot \mathbf{P}_{Y \mid X}\left(y_{2} \mid x_{2}\right) \cdots}
\end{gathered}
$$

## A Communication Example Decoding



- Decoding: Majority Rule
- Consider a single message: $M$
- Encoded r.v.s: $X_{1}, \ldots, X_{n}$
- Received r.v.s: $Y_{1}, \ldots, Y_{n}$
- Decoded message is a function of $Y_{1}, \ldots, Y_{n}$ :

$$
\hat{M}_{Y_{1}, \cdots, Y_{N}}\left(y_{1}, \cdots, y_{n}\right)= \begin{cases}0 & \text { If } y_{1}+\cdots+y_{n}<n / 2 \\ 1 & \text { If } y_{1}+\cdots+y_{n} \geq n / 2\end{cases}
$$

## A Communication Example Performance

Source
Messages $\rightarrow$ Encoder $\rightarrow$ Decoder $\longrightarrow \begin{aligned} & \text { Received } \\ & \text { Messages }\end{aligned}$

- If $n=1$, what is $\mathbf{P}(\hat{M} \neq M)$ ?
- What if $n=3$ ?
- What if $n$ is made arbitrarily large?
- Is there anything lost?
- How good is the decision rule?


## A Communication Example Probability of Error

Source
Messages $\rightarrow$ Encoder $\rightarrow$ Dhannel $\longrightarrow \begin{aligned} & \text { Recoder } \\ & \text { Messaged }\end{aligned}$

- Probability of error: $\mathbf{P}(\hat{M} \neq M)=\mathbf{P}(\hat{M}=1 \mid M=0)(1-p)$

$$
+\mathbf{P}(\hat{M}=0 \mid M=1) p
$$

$$
\mathbf{P}(\hat{M}=1 \mid M=0)=\mathbf{P}\left(\left.Y_{1}+\cdots+Y_{n}>\frac{n}{2} \right\rvert\, M=0\right)
$$

$$
=\sum_{k \geq \frac{n}{2}}\binom{n}{k} e^{k}(1-e)^{n-k}
$$

