LECTURE 7

• Readings: Finish Chapter 2

Lecture outline

- Joint PMFs
- Independent random variables
- More expectations, variances
- Binomial distribution revisited
- The hat problem
- Application: Point-to-Point Communication

Review

- Random Variables and PMF
- Expectation
- Variance
- Examples:
 - Binomial, Geometric, and Poisson

Joint PMFs

•
$$p_{X,Y}(x,y) = \mathbf{P}(X = x \text{ and } Y = y)$$

•
$$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$$

•
$$\sum_{x} p_{X|Y}(x|y) = 1$$

Independent Random Variables

 $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

• Random variables *X*, *Y* and *Z* are independent if (for all *x*, *y* and *z*):

$$p_{X,Y,Z}(x,y,z) = p_X(x) \cdot p_Y(y) \cdot p_Z(z)$$

- Example: Independent?
- What if we condition on X ≤ 2 and Y ≥ 3?

у					
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	x

Expectations

$$\mathbf{E}[X] = \sum_{x} x \cdot p_X(x)$$
$$\mathbf{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \cdot p_{X,Y}(x,y)$$

- In general: $E[g(X,Y)] \neq g(E[X],E[Y])$
- $E[\alpha X + \beta] = \alpha E[X] + \beta$
- E[X + Y + Z] = E[X] + E[Y] + E[Z]
- If *X* and *Y* are independent:

$$- \mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y]$$

 $- \operatorname{E}[g(X) \cdot h(Y)] = \operatorname{E}[g(X)] \cdot \operatorname{E}[h(Y)]$

Variances

- $\operatorname{var}(aX) = a^2 \operatorname{var}(X)$
- $\operatorname{var}(X + a) = \operatorname{var}(X)$
- Let Z = X + Y. If X and Y independent: var(X + Y) = var(X) + var(Y)
- Examples:
 - If X = Y, var(X + Y) = 4var(X)
 - If X = -Y, var(X + Y) = 0
 - If X, Y indep., and Z = X 3Y, var(Z) = var(X) + 9var(Y)

Binomial Mean and Variance

- *X* = # of successes in *n* independent trials
 - Probability of success: p

$$\mathbf{E}[X] = \sum_{k=0}^{n} k \cdot {\binom{n}{k}} p^k (1-p)^{n-k}$$

- $X_i = \begin{cases} 1, & \text{if success in trial } i, \\ 0, & \text{otherwise} \end{cases}$
- $\operatorname{E}[X_i] = p$ $\operatorname{var}(X_i) = p p^2$
- E[X] = np var(X) = np(1-p)

The Hat Problem

- *n* people throw their hats in a box and then pick one at random.
 - -X: number of people who get their own hat

– Find $\mathbf{E}[X]$

 $X_i = \begin{cases} 1, & \text{if } i \text{ selects own hat,} \\ 0, & \text{otherwise.} \end{cases}$

- $X = X_1 + X_2 + \dots + X_n$
- $P(X_i = 1) = \frac{1}{n}$
- $\mathbf{E}[X_i] = \frac{1}{n}$
- Are the X_i independent? No
- $\operatorname{E}[X] = n(\frac{1}{n}) = 1$

Variance in the Hat Problem

• $\operatorname{var}(X) = \operatorname{E}[X^2] - (\operatorname{E}[X])^2 = \operatorname{E}[X^2] - 1$

$$X^{2} = \sum_{i} X_{i}^{2} + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i} X_{j}$$

• $\operatorname{E}[X_i^2] = \frac{1}{n}$

$$P(X_1 X_2 = 1)$$

= P(X_1 = 1) · P(X_2 = 1 | X_1 = 1) = (\frac{1}{n})(\frac{1}{n-1})

•
$$E[X^2] = n\frac{1}{n} + n(n-1)(\frac{1}{n})(\frac{1}{n-1}) = 2$$

• $\operatorname{var}(X) = 1$

Challenge: BBall Party

Your Guests are all BBall fans and they wear BBall Caps. There is a total of s teams in the league. Everyone of your guests is equally likely to be a fan of any one of these teams.

Compute the expected number of people who will pick a cap from their own team!

A Communication Example Introduction

Source Encoder Channel Decoder Messages Received

- A point-to-point communication system.
- Probabilistic model:
 - Messages are independent binary r.v.s.
 - The encoder is a deterministic function.
 - The channel introduces errors. It is modeled as a conditional pmf.
 - The decoder is a deterministic function.

• **Messages**: I.I.D. Bernoulli r.v.s M_1, M_2, \cdots

$$M_i = \begin{cases} 1, & \text{with probability p} \\ 0, & \text{with probability } 1 - p \end{cases}$$

• **Encoding**: Repeat *n* times,

$$\{0,1\} \longmapsto \{0,1\}^n$$

 $0 \longrightarrow 00 \cdots 0$
 $1 \longrightarrow 11 \cdots 1$

- Encoded bits are transmitted independently one by one through the channel.
- The channel flips each bit independently, and with "crossover" probability *e*.
- Pictorially:

• Mathematically:

$$p_{Y|X}(y|x) = \begin{cases} 1-e & \text{If } x = y. \\ e & \text{If } x \neq y. \end{cases}$$

• Multiple transmissions: X_1, X_2, \cdots Y_1, Y_2, \cdots

 $\mathbf{P}_{Y_1, Y_2, \dots | X_1, X_2, \dots}(y_1, y_2, \dots | x_1, x_2, \dots)$ = $\mathbf{P}_{Y|X}(y_1|x_1) \cdot \mathbf{P}_{Y|X}(y_2|x_2) \cdot \dots$

A Communication Example Decoding

- Decoding: Majority Rule
 - Consider a single message: M
 - Encoded r.v.s: X_1 , ..., X_n
 - Received r.v.s: Y_1 , ..., Y_n
 - Decoded message is a function of Y_1 , ..., Y_n :

$$\widehat{M}_{Y_1,\dots,Y_N}(y_1,\dots,y_n) = \begin{cases} 0 & \text{If } y_1 + \dots + y_n < n/2. \\ 1 & \text{If } y_1 + \dots + y_n \ge n/2. \end{cases}$$

A Communication Example Performance

Source Encoder Channel Decoder Messages Received

- If n = 1, what is $P(\hat{M} \neq M)$?
- What if *n* = 3?
- What if *n* is made arbitrarily large?
- Is there anything lost?
- How good is the decision rule?

A Communication Example Probability of Error

Source Encoder Channel Decoder Messages Received

• Probability of error: $P(\hat{M} \neq M) = P(\hat{M} = 1 | M = 0)(1 - p)$ + $P(\hat{M} = 0 | M = 1)p$

$$P(\hat{M} = 1 | M = 0) = P(Y_1 + \dots + Y_n > \frac{n}{2} | M = 0)$$
$$= \sum_{k \ge \frac{n}{2}} {n \choose k} e^k (1 - e)^{n-k}$$